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Effect of Phase Fluctuations on the Low-Temperature Penetration
Depth of High-T, Superconductors
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We describe a simple model to estimate the effects of order parameter phase fluctuations on the
penetration depth A(T) of high-T, superconductors. When treated classically, such fluctuations are found
to produce a linear temperature dependence of A(T), which may be comparable to the experimentally
observed magnitude. This dependence persists when the combined effects of charging interactions and
dissipation are included in the model. Hence, such a dependence may not be a unique signature of a
superconductor with line nodes at the Fermi surface.

PACS numbers: 74.25.Nf, 74.25.Bt, 74.40.+k, 74.72.Bk

It is widely believed that one probe of the symmetry of
the pairing state in high-T, superconductors is the tem-
perature dependence of the London penetration depth
A(T) at low temperatures T [1—5]. For example, s-wave
pairing produces a nodeless energy gap with the full
crystal symmetry. In this case A(T) should have the
characteristic BCS temperature dependence A(T)/A(0)—
1 ~ (27r ho/kti T) 't2e 'l"'r, where Ao is the zero-
temperature BCS energy gap. On the other hand, in
superconductors with orthorhombic symmetry, such as
low-temperature La2Cu04 q and YBa2Cu 306 95, and
superconductors with tetragonal symmetry, such as
electron-doped Nd 2Cu04 and some Tl-based materi-
als, there are many possible singlet pairing states, in
addition to s-wave states. All such states, other than
s-wave states, lead to energy gaps with line nodes at
the Fermi surface (assuming a spherical or cylindrical
Fermi surface). Hence, they produce a A(T) which is
linear rather than exponential in T, at low temperatures,
i.e. , A(T) = A(0) + CT. Nuclear magnetic resonance
measurements on YBa2Cu 306 95 and other CuO-based
high-temperature superconductors [6] have found a drop
in the Knight shift consistent with singlet, rather than
triplet, pairing.

The temperature dependence of A,b(T) (for a field H llc)
has been measured by Hardy et al. [1] in untwinned sin-

gle crystals of YBa2Cu30695 They reported a linear tem-
perature dependence and interpreted it as implying a
singlet superconducting order parameter with d-wave
pairing. A similar temperature dependence was ob-
tained in experiments in (not necessarily single-crystal)
YBa2Cu 306 95.

In this Letter, we show that order parameter phase Auc-
tuations produce a linear T dependence in A, b(T) in the
classical limit. We also present a variational calculation
showing that this linear T dependence persists even when
quantum effects due to charging and dissipation are in-
cluded in a simple model. Thus, the presence of a linear
T dependence is not sufficient, by itself, to demonstrate

an unconventional order parameter in the high-T, . super-
conductors.

We first give a simple general argument suggesting
that classical phase fluctuations in a nodeless order
parameter could produce a low-temperature penetration
depth A(T) varying linearly with T in an isotropic, three-
dimensional (3D) material. Denote the (complex scalar)
order parameter by P(x) = tlo(x) exp[iO(x)] and assume,
as in the BCS theory, that the amplitude tl'to = (titp)
(where ( .) is a canonical average) is approximately
T independent at low T [The actual .exponential T
dependence will not produce a linear variation in A(T).]
The dominant thermal effects at low T are therefore due
to phase fluctuations.

For an isotropic superconductor, the energy associated
with phase fluctuations will be of the form

3 fi toto
H = lV+l d x = „ lVgl d'x,

2Pl 2'

47r A2(T)
' (2)

where 1 is the u th Cartesian component of current
density. In the presence of a vector potential A, —i6V' is
replaced by the gauge-invariant operator —i A, V' —e*A/c.
Substituting this relation into (1), and using (2) gives

= 4~go
—~ (e*)'

(3)
Ul C

1

A2(0)

Equation (2) shows that 1/A (T) is proportional to the
helicity modulus, y —= (tl F/ilA )p=p, of the superconduc-
tor [7], which measures the stiffness of the superconduc-
tor against phase twists, and is analogous to the spin-wave

We Fourier transform this to obtain H = (6 t/to/2m*) X

g„k l Ok l and use the equipartition theorem to get
&l@kl ) = kaT/Pock, where ek = 6 k /2m*. There is an

upper cutoff wave vector in the sum of order I/go, where

so is the zero-temperature coherence length.
Now A(T) is related to the Helmholtz free energy F by
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stiffness in a ferromagnet. In the classical limit, this he-
licity modulus decreases linearly with T at low T in both
2D and 3D, leading to a linear increase in A(T) with T

We can make a crude estimate of this slope in 3D,
by considering the variation of (P), which is analo-
gous to the magnetization [this approach would not
work in 2D, since the magnetization there is zero,
but y(T) would still depend linearly on T at low T]
At low T, the dominant T dependence of (tk) arises
from phase fluctuations, so that (P) = /pl(exp(ie))l. Ex-
panding the exponential to second order in 0, we ob-
tain (exp(ie)) = 1 —(0 )/2, where (0 ) = Xk(lekl ) =
[1/(27r) pp] f(k(, ]& d k(k&T/ek) This. shows that, in
3D, (P) decreases linearly with T. We can estimate the
effect of this decrease on 1/A2(T), using Eq. (3) but with

Pp replaced by (P). The result is

S~(T) —= ~(T) —~(0) = CT, (4)
where C = k~[87rA (0)]/sp4p and 4p = lhc/e*l is the
flux quantum. If we take e = 2e, A(0) = 2000 A., and

s p
= 10 A, we obtain C = 1 A/K. This is somewhat

smaller than the value observed by Hardy et al. but these
are intended only as a very rough estimate.

Next, we attempt a more quantitative estimate of the
expected linear T coefficient, and also introduce a simpli-
fied description of the expected quantum corrections. We
again consider only phase fluctuations of the order pa-
rameter. We also use a discrete representation, in which
the superconductor crystal is described as many small
"grains, " each comparable in size to $p and coupled to-
gether by a Josephson-like interaction. Such a representa-
tion has frequently been used to represent granular [7—9]
and even single-crystal [10] superconductors.

These assumptions lead to a description of the super-
conductor in terms of an anisotropic x-y model:

H = J, g [1 —cos(0, —0,)]
(ij),ab

+ J2 g [1 —cos(0; —0,)]. (5)
{ij),c

Here the sums run over all nearest-neighbor bonds in the
a-b plane and in the c direction of a simple cubic lattice,
which we take to have lattice constant jp. The relation
between the parameters of this model and those of the
original superconductor are described below.

A(T) in the two principal directions can now be
estimated using a "self-consistent phase phonon" (SCPP)
approximation previously used to treat isotropic granular
superconductors [8]. To allow for quantum corrections,
we use a more general Hamiltonian than Eq. (5), which
includes a diagonal charging energy H0 = (Up/2) P; n;

Up is an effective "grain charging energy,
"proportional to

the inverse of the effective "grain self-capacitance. "
n; is

the Cooper pair number operator for grain i; it is quantum-
mechanically conjugate to t9;, and has the representation
n; = —iB/Be;. Possible forms other than the assumed
diagonal charging energy are discussed below. Besides

being required to insure zero entropy as T 0, these
charging effects may be of measurable significance in
some high-T, materials [11]. The total Hamiltonian is the
sum of these two terms, i.e., H, , = H~ + H.

In the SCPP approximation, one approximates H„, by
"best" harmonic Harniltonian of the form

H, = 'gn', + ' g(0, —0)'

+ ' g(0, —0)'. (6)
(ij),c

F„, is evaluated using the true Hamiltonian H„, but the
eigenstates of the harmonic Hamiltonian:

Ftot Fh + (Htot + Hh)h (7)

where the angular brackets denote canonical averages in
an ensemble corresponding the harmonic Hamiltonian (6),
and Fh is the harmonic free energy. According to the
Gibbs-Bogolyubov inequality [12], the right-hand side of
(7) represents an upper bound to F for any K~ and K2.
Substituting H„, and Eq. (6) into Eq. (7), we find that the
quantity to be minimized is

C fL Q@p
4m'A2 2e 2' (10)

1
F... =Fh+ p J, 1 —exp — ——K, D;,

Jtij ),ab

D;~ 1+ g J2 1 —exp — ——K2D;, . (8)
(ij),c

Here we have used the identity, valid for a Gaussian
Hamiltonian, that (cos(0; —0, )) = exp[ —2((0; —0, ) )],
and D,, —= ((0; —0,)').

On Fourier transforming, one obtains D;, = (4/N) X

p (leql2) sin (2q R;,), and Hh = (Up/2) gq[nqn ~ +
~2(6/2Up)20qe q]. Here co2 = (16U/A. )(K~[sin (q a/2)
+ sin (q~a/2)] + K2 sin (q, a/2)), a being the lattice
constant, which is taken to be the same in all
three directions. At finite temperatures, (l eq l2) =
(2Up/A~q) coth(PA, cuq/2). For given parameters J~ and

J2, the values of KI and K2 which minimize the free en-
ergy can now be determined as functions of temperature.

In the presence of a vector potential A in the nth
direction, 0; —

Oj is to be replaced by the gauge-
invariant phase difference, 0, —

0~
—A;i, where

A,~
= (2'/4p) f, A dl = 2vrA a/4p in the n direction

and zero in the other two directions. This vector potential
induces a current in the a direction even at zero phase
difference. The resulting current density will be

—(2e/a fi,) K A;~ = —(2e/a 6) K (2vrA a)/4p. (9)

From the coefficient of A in (9), we can deduce the
penetration depth via the first London equation. The
result is
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This equation connects K to the temperature-dependent
penetration depth A and the lattice constant a —= go

We can use these relationships to estimate the T
dependence of A, b and A, . The T = 0 value of Ji
[=Ki (T = 0) in the classical limit) can be deter-
mined from the measured value A, b(T = 0), i.e., from
Eq. (10). The anisotropy at any temperature J i / J2
is taken as the mass ratio, m, /m, b, a quantity whose
value can range from 25 for YBa2Cu&0695 [13] to
=3000 for Bi2Sr2CaCu20s+q [14]. We obtain the
temperature dependence of J) by assuming the relation
Ji(T) = Ji(0)[Ascs(0)/ABcs(T)], where Ai3cs(T) is the
BCS form, a quantity which varies exponentially slowly
at low T.

We turn now to variational results, considering first
Up = 0. In this case, both K) and K2 are linear in
temperature at low temperatures, as expected from the
qualitative arguments given earlier. For Ji /J2 = 25,
Ji (0) = 90.9 K, and so = 10 A (values roughly appropri-
ate to YBa2Cu30695), we estimate A, (b0) = 2600 A and

dA, b/dT = 3.5 A/K. In Fig. 1 we plot Ki(T) and K2(T)
for these parameters. The low-temperature slopes of these
curves are dKi/dT = 0.245, dK2/dT = 0.018. The corre-
sponding AA(T) =—A, b(T) —A, (0b) obtained from these
data is shown in the inset.

The slopes dA, /dT and dA b/dT depend on the as-
sumed values of Ji(0) and J2(0), and hence on A, (0)
and A, (0b). Figure 2 exhibits this dependence for three

0

choices of parameters, assuming go = 10 A. From top
to bottom, these correspond to the (2D) limit of infi-
nite anisotropy, the YBazCu30{j95 mass anisotropy of 25,
and the isotropic 3D case. The go dependence enters
only as an overall scaling of the abscissa and ordinate—

—[//2
that is, so (dA, b/dT)z ohas a u=niversal dePendence on

—)/2
$p A, b(T = 0), indePendent of so, as indicated in the
figure. Evidently, even in this simple model, the SCPP
approximation can produce slopes of the order of the ex-
perimental values of 3.5 —4.3 A/K [1), depending on the
assumed values of A(0) and of go.

Figure 3 shows the influence of charging effects. The
parameters here are chosen purely for illustrative pur-
poses, and are not intended to apply to specific real mate-
rials. For the cases shown, we use J~ ~ Up = J2. The
extra term adds a low-temperature curvature to AA(T),
which we expect to vary as T3 for this assumed form of
the charging energy. This temperature dependence is an-
ticipated because the diagonal form of the charging energy
allows for acoustic phase phonons, which would lead to a
T3 term in the specific heat, and also in AA(T) The "De. -

bye temperature" corresponding to these excitations may
be extremely small, allowing the linear T dependence to
persist to very low T.

If the Coulomb energy were long range, e.g. , if H~ =
[(e*) /2) g;i n; n, /~r; —ri ~, where r; is the position of the
ith grain, then the "acoustic phase phonons" would be
driven up to a finite "Einstein" frequency, co&

—= k&Te/fi
The corresponding low-temperature thermodynamic prop-
erties, including the penetration depth, would have a
dominant exponential temperature dependence below TF,
destroying, for sufficiently large TF, the linear T depen-
dence of 1/A2.

This outcome can be avoided, and the low-temperature
linear T dependence restored, by including Ohmic dis-
sipation. Using a variational approach similar to ours,
Chakravarty et al. [9] have shown that if an isotropic
H„, = H + Hg is coupled to an Ohmic heat bath, the tran-
sition to a phase coherent state occurs at a critical value of
the intergranular shunt resistance R (of order Ro =—A. /e2,
irrespective of the magnitude of the charging energy).
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FIG. 1. Plot of K, (T)/K, (0) = [A,b(T)]'. Solid line cor-
responds to an in-plane penetration depth (H ((c) assuming
A,b(0) = 2600 A. Dashed line corresponds to A, (H J c) assum-
ing anisotropy [A,b(0)/A, (0)]' = 1/25. Inset: plot of AA(T) —=

A, b(T) —A,b(0). At low temperatures, there is a linear tem-
perature dependence with slope dA, b/dT = 3.5 K/A.

1 600.0 2000.0 2400.0
X b(T=O) (X)

2800.0

FIG. 2. Plot of (dA, b/dT)T=o as a function of A„b(0) for
three cases: 2D limit ("infinite anisotropy"), mass anisotropy
approximately equal to that of YBa2Cu30695 and isotropic 3D
limit. Right hand and top scales also show the "universal"

dependence of $o (dA~b/'dT)T=o upon go A, b(T = 0).
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FIG. 3. Plots of [ A, b( 0) /A, q(T)] for several different charging
energies Uo and zero dissipation: from top down, curves corre-
spond to Uo = 0, 1, 4, 9, and l6 K. Inset shows the combined
effects of long-range Coulomb interaction and dissipation for
dissipation parameter n = ~6/2e R = 8 in an isotropic model,
as described in the text.

(short- or long-range) Coulomb interactions and shunt
dissipation are variationally included in the calculation.
Thus, these simple calculations suggest that thermody-
namic phase fluctuations cannot be ignored in consider-
ing the low-temperature behavior of A, b(T). Their effects
should be ruled out before the behavior of A, b(T), by it-
self, is used to infer conclusions regarding the symmetry
of the order parameter in high-T, superconductors.
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Grant No. DE-FG02-90-ER45427, through the Midwest
Superconductivity Consortium at Purdue University.
Calculations were carried out in part using the facilities
of the Ohio Supercomputer Center.

Note added. —Emery and Kivelson [15] have shown
that a model mathematically resembling that of [9] can
be derived for superconductivity in a bad metal without
invoking a heat bath, yet still producing a linear T
dependence of I/A(T)~ at low T for an isotropic or
anisotropic material.

We have extended these calculations to long-range
Coulomb interactions, assuming that such a model, with
dissipation, is properly applied to single-crystal high-
T,. superconductors. Whenever R is small enough to
allow a transition to phase coherence at T = 0, for
both short-range and long-range Coulomb interactions
of any strength, we find that at low T, 1/A (T) varies
linearly with T, the classical behavior is restored. As
an illustration, the inset of Fig. 3 shows I/A2(T) as
calculated for an isotropic 3D superconductor with long-
range charging energy and a dissipation coefficient, n —=

(~/2) (6/e2)/R = 8. This value is obtained by arbitrarily
choosing R = $o

' p, b(T = T,), where we take the grain
size as go = 10 A and p, b(T = T, ) = 80 p, A cm as the
normal-state a.-b resistivity of YBa2Cu306» just above
T, . Note that this choice gives roughly the experimentally
observed dA/dT = 3.5 A/K.

In conclusion, we have shown that phase fluctuations
in a scalar order parameter produce a linear T depen-
dence in A(T) in the classical limit. If quantum effects
can be neglected, the slope can reach an order of mag-
nitude comparable to the experimental value of 3.5 A/K,
when reasonable estimates of the zero-temperature pen-
etration depth and anisotropy are incorporated. This T
dependence remains when the combined inhuence of
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