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Transverse Gauge Interactions and the Vanquished Fermi Liquid
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The interaction between a Fermi liquid and transverse gauge bosons is considered within the
framework of the renormalization group. It is shown from an expansion in e = 3 —d, where d is
the spatial dimension, that a nontrivial fixed point emerges for dimensions less than three, and that this
fixed point signifies a critical Fermi system different from the conventional Landau-Fermi liquid. The
dimension d = 3 is the upper critical dimension where the correlation functions contain logarithmic
corrections; for d ~ 3, the system behaves like a Landau-Fermi liquid. Some of the consequences of
this breakdown of Fermi liquid are discussed.
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It has been known for some time [1,2] that a sys-
tem of fermions interacting with transverse gauge bosons
does not behave like a Fermi liquid. For real electro-
magnetic interactions, this breakdown occurs at presum-
ably unobservably low temperatures or energies. Thus, it
would appear that this problem is of little practical conse-
quence. However, in recent years, it has been repeatedly
pointed out that a strongly correlated electron system can
be equivalent to a problem of fermions interacting with
a fictitious transverse U(1) gauge field, where the gauge

1
coupling is not the fine structure constant (,37) of the real
electromagnetic interaction, but of order unity. We do
not examine this equivalence, which can indeed be com-
plex, but a vastly simpler well-defined model. It is hoped
that a proper elucidation of this problem would lead to
insights that may be useful in developing effective low
energy theories of realistic physical problems, such as the
normal state of high temperature superconductors [3], the
state of half-filled quantum Hall systems [4], or quark-
gluon plasma [5].

A normal Fermi liquid, at zero temperature, is a critical
system; the excitations do not have a gap and are possible
at all energy scales. However, despite its criticality,
such a system does not normally pose any difficulty if
these excitations remain decoupled [6]. The situation is
reminiscent of the Gaussian model of statistical mechanics
which is critical, but trivial, because all modes decouple.
However, there are well-known examples, such as the
Kondo problem, in which the nontrivial coupling between
the excitations leads to interesting consequences [7].
Another interesting example of the critical nature of the
Fermi liquid is Kohn and Luttinger s discovery [8] that,
for a Fermi system, it is essential to pay attention as to
how the zero temperature, low frequency, and infinite
volume limits are approached. Clearly, a system with
a gap in the excitation spectrum would behave more
normally.

It is now well understood that the Landau-Fermi liquid
interactions are marginal perturbations [9—11] that lead to
no new conceptual modifications. Are there relevant per-

turbations that are physically interesting? Indeed, attrac-
tive coupling between electrons is relevant and leads to
superconductivity with a broken symmetry ground state.
Are there relevant perturbations that lead to a critical state
which is described by fermion operators with scaling di-
mensions different from those of the Fermi liquid? It is
this possibility in higher dimensions that is fascinating.
In the present Letter we examine this possibility. The re-
sults are complementary to those obtained by Polchinski
[12] and are also broadly consistent with those of Nayak
and Wilczek [13]who examined a different model.

The Hamiltonian density for a system of nonrelativistic
fermions in interaction with a vector potential A is

H = Ho + (V + igA)t/tt (V —igA)t/t + U, (1)
2m

where we have set both Fi and the velocity of the gauge
bosons to be unity. The effect of the potential interaction
U will be assumed to be incorporated in the Hamiltonian
of the fermions in the spirit of Landau theory and will
not be discussed further, thereby simplifying the problem.
Ho is the Hamiltonian density of the free gauge field.

We shall treat the gauge group to be noncompact. This
is not an entirely innocuous assumption. Polyakov [14]
has shown that in a compact (2 + 1)-dimensional quan-
tum electrodynamics, in the absence of the coupling to
the matter field, the gauge quanta are massive due to in-
stanton effects. Clearly, our perturbative renormalization
group approach cannot capture these instanton effects, and
if the instantons survive in the presence of the coupling to
the fermions with a Fermi sea, then the results that we
shall derive from an expansion in e = 3 —d cannot be
correct at e = 1. At this time, it is not known for sure
if these instantons survive or not. To see why this is a
subtle question, see Khlebnikov [15].

In the present Letter we calculate the three one-loop
graphs shown in Fig. 1 to determine the renormalization
group equations. The method is essentially the standard
field theory technique [16]. It is important to note, how-
ever, that in a gauge theory single particle Green's function
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FIG. 1. One-loop diagrams: (a) the gauge boson self-energy,
(b) the fermion self-energy, and (c) the one-loop vertex correc-
tion. The solid lines correspond to the fermions and the dashed
lines correspond to the gauge bosons.

is not a gauge invariant quantity. The renormalization fac-
tors clearly depend on the choice of the gauge. One might
ask then why we are interested in calculating a non-gauge-
invariant quantity. The answer is that we use this calcu-
lation as a crutch to obtain the renormalization group P
function which is gauge invariant, and therefore the criti-
cal exponents corresponding to the fixed points must also
be independent of the choice of the gauge; below, we dis-
cuss further the question of gauge invariance.

First, consider the one-loop calculation of the photon
self-energy [Fig. 1(a)] in arbitrary dimension d. To one-
loop order, the photon propagator, analytically continued
to real frequency v at T = 0, is

= z

X at")(k —k')D„(k, v), (Z)

where

D;, (k, ) = (8;, — ~', , (3)
k;k, 1

k~ k2 —v2 + A k, v

Here, ReA —(v/kvF)2, when both v and v/kvF 0,
and ImA ——(v/kvF) as we approach the real axis
from the upper half plane, and ImA —v/kvF as we
approach the real axis from the lower half plane; v~
is the Fermi velocity. Because of Landau damping of
the gauge bosons, the low frequency behavior of the
gauge propagator is significantly modified by the one-

loop contribution. That the damping is proportional to
v/kvF can be seen from the following simple argument.
The lifetime of the particle-hole pairs is proportional
to (kvF) ', and we expect the ImA to contain the
dimensionless combination v/kvt;. We take the one-loop
corrected propagator to be the effective gauge propagator
for further calculation and consider the effective gauge
propagator D,', (k, v), where

k2 k2 -+ iy v kvF

where y ~ (g vzpF )pF. From this propagator, the2 (d —3) 2

engineering dimension of the gauge field is s2, where s is
the dilatation factor for the units of length and time. The
engineering dimension of g vp is s . We shall also
show from the vertex graph that this is indeed the correct
transformation law. Thus, the engineering dimension
of the gauge field is given by a, (k, v) a,'(k', v') =
s t~+3~)2a;(k, v). To one-loop order, the photon wave
function does not receive any anomalous dimension; in
the language of quantum electrodynamics, Z3 = 1.

The calculation of the single particle self-energy in ar-
bitrary dimension d is similar to that described in Ref. [1].
From this calculation we obtain the wave-function renor-
malization factor Z of the fermion field and the renor-
malization factor Z„, for the Fermi velocity [13], i.e.,

vF, = Z, v~,' actually, we obtain Z and the product ZZ,
To obtain the renormalization group P function to one-
loop order it is only necessary to compute the integrals
at the fixed dimension d = 3. We impose a high fre-
quency cutoff A and ask how the bare coupling constant
no = govF, /4~ scales as we hold the renormalized cou-
pling constant n = g vF/4' fixed at the renormalization
point, at a low frequency p„as we move the cutoff A.

The engineering dimension of the free fermion operator
can be obtained from the definition of the Green's
function and can be shown to be P(p, c0) P'(p', cu') =
s~"+ )) P(p, cu). The logarithmic part of the one-loop
fermion self-energy X [Fig. 1(b)], when p = pz, is

np A
X(pF, tu) = — ln (5)

ace
' 3' leal

In calculating Eq. (5), the energy variable e(k) used in the
free Green's function was not the linearized one [1]. The
renormalization factor Z = [1 —BX(pF, tu)/Bcul~]
Therefore,

(g)
Z = 1 — Inl

l
+ O(no). (6)

37r (lpl)
In fact, the above result holds as long as p/FF &) (lp-
pFl/pz) . In the opposite limit, i.e., p, /EF « (lp-
pF l/pF)s, the self-energy does not contain any infrared
anomaly, i.e., there are no logarithmic terms. The easiest
way to see this is to calculate the imaginary part of the
self-energy, which in this limit, is

&"(p, ~) ~

fle-

eu sgn(tu ), (7)
)
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identical to the behavior of a Fermi liquid. The function

f(x) is a smooth function of its argument and is given by
P4 —&/(d —6)][1 —(x/2)" ], where Kd is the surface
area of the d-dimensional unit sphere divided by (2')".
Thus, the non-Fermi-liquid behavior is manifest only
when p pF as fast as ~ 0. This can also be
seen from an elegant argument by Polchinski [12]. We
conclude, therefore, that, to one-loop order, ZZ, = 1

because the factor ZZ, multiplies the energy dispersion
e(k) in the fermion propagator.

We now turn to the vertex correction. First, we
would like to determine the engineering dimension of the
coupling constant gp. Each vertex corresponds to two
fermion field operators (one creation and one destruction)
and one gauge field operator. There are two momentum
and frequency integrations, one set corresponding to the
fermion operators and the other corresponding to the
gauge field operator. In addition, the gauge field operator
is dotted with the momentum of the incoming fermion
and the overall vertex is multiplied by go/m. The entire
combination should have zero engineering dimension.
Thus, from the dimensions of the fermion and the gauge
field operators that were determined previously, gpvF,
has the engineering dimension s~3 d~, the engineering
dimension of the Fermi velocity vF, is clearly zero.

It is possible to see that the vertex does not receive any
anomalous dimension to one-loop order. From the Ward
identity, the second order contribution to the vertex is

p ~,&(p, p)l„= 1"'(pF pF p) (8)
where p, is the renormalization point, smaller than any
relevant frequency in the problem. From the previous
considerations of the self-energy, it is clear that there is
no In lA/p, l contribution to V~X(p, p). Thus, to one-loop
order, the vertex renormalization constant Zg is 1 [17].
The same conclusion was also reached by Polchinski [12]
using a different argument.

The bare fermion-gauge coupling is given by gp, which
is given by g(Zg/ZZ „) in terms of the renormalized
coupling g. However, because both Zg and ZZ, are
unity, we have gp = g. The actual coupling constant that
characterizes the physical properties is, however, not gp
but no —= govF, /4vr This lead. s us to the simple relation
upA Z = p, 6, where we have defined the dimensionless
bare coupling constant ap, by np = apA', and similarly
the dimensionless renormalized coupling constant 6, by
n = n p' The ,re.normalization group P function is
obtained by taking the derivative with respect to A,
holding p„n, and vF fixed. We get

-2
0!p

6A'p +
377

The P function implies that for d ( 3 there is a nontrivial
infrared stable fixed point, which for infinitesimal e
is ap = 3'7TE'. The critical exponent corresponding to
this fixed point is universal and is e. Therefore, the
quasiparticle weight at p = pF vanishes as cv', as co 0,

unlike Fermi liquid theory. As e 0, there would be
logarithmic corrections and the weight will vanish only as
[1n(A/cu)] ', found previously in Ref. [1]. At first sight,
one might be tempted to conclude that these results are
gauge dependent. However, this is not so. The density
of states p(cu) defined by p(co) = m 'Q„ImGR(k, cu),
where GR(k, cu) is the retarded fermion Green's function,
is, in fact, invariant with respect to time independent
gauge transformations that do not mix the Coulomb part
of the interaction with the magnetic part; because of the
sum over k, the fermion operators refer to the same
spatial point. Note that the infrared anomaly is, to a
good approximation, independent of the momentum, and,
therefore, to obtain the singular part of the density of
states, it is adequate to replace the Green's function by
its singular part, which is independent of momentum; the
remaining sum over k simply gives the total number of
degrees of freedom. The result is clearly gauge invariant,
as it should be. We have also explicitly checked the gauge
independence of the infrared anomaly by considering
a family of time independent gauge transformations,
where the projection operator is 6 ii + (A —1)q qp/q2,
A being a gauge parameter.

To avoid misunderstanding, it is important to make a
comment here. In our e expansion, the coupling constant
is marginally irrelevant in the infrared at d = 3. The
relevancy is defined with respect to the trivial fixed point.
As in p field theory, we find the nontrivial fixed point
by expanding in e and o. about the trivial fixed point.
We do not attempt an explicit construction of a nontrivial
fixed point Hamiltonian. For even the relatively well-
understood p4 field theory, the direct construction of the
nontrivial fixed point Hamiltonian is not known, though
all correlation functions can be obtained from the e
expansion.

Returning to Eqs. (7) and (8), it is interesting to note
that the parameter l p —pF l

acts like a symmetry breaking
parameter which cuts off the infrared anomaly, just as in
statistical mechanics the magnetic field cuts off the critical
fluctuations. In analogy with the magnetic transitions,
one can define a critical exponent 6, defined there to be
M —H /~. The crossover exponent 6 in our case would
be 3; note that we are not implying the existence of an
obvious symmetry breaking order parameter.

By integrating out the fermions and writing down an
effective action containing only the gauge field, Gan
and Wong [18] have argued that all terms beyond the
quadratic term are irrelevant, i.e., the wave-function
renormalization of the gauge boson Z3 is unity. Thus,
they have concluded, combined with the standard
quantum electrodynamics argument Z& = Z2, that the
renormalization group P function is indentically zero in
all dimensions. Z] is the renormalization factor for the
electron-photon vertex and Z2 is the same as the Z used
here. To see the connection with quantum electrodynam-
ics, we have to identify Z& = Zg/Z„, . We agree that the
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charge gp does not acquire any anomalous dimension.
However, the P function is not identically 0, as shown in

Eq. (9).
That the wave-function renormalization of the gauge

boson is indeed unity, to one-loop order, can also be
explicitly checked by calculating the coefficient of the
—TlnT term of the specific heat in d = 3. We have
carried out this calculation without integrating out the
fermions as in Ref. [I], ensuring that all T lnT terms are
taken into account. The calculation is tedious, but we find
that the specific heat is given by C = (gppF/36' )T lnT.
The result reported in Ref. [1] is incorrect by a factor of 4.
According to Gan and Wong, however, the —T lnT term
in the specific heat is entirely contained in the quadratic
term in the effective gauge action. An explicit calculation
of the specific heat using the quadratic effective gauge
action shows that this is indeed true, confirming that,
to one-loop order, the gauge field does not receive any
anomalous dimension; whether or not this holds to higher-
loop order is not clear.

For d = 3, an interesting consequence of the Ward
identity gp = g is the absence in the inverse fermion
propagator G ' of all leading logarithms proportional
to ap ln"A, for all n ~ 2. Consider the renormalization
group equation [AB~ + pB, + pFB, —rl]G ' = 0,
where g = d lnZ '/d lnA~, ~, and /3F = dvF„/
d lnA~, ~. However, from the discussion above it
follows that p =

nodal and pF = vF, q Therefo. re,
[AB~ + rl(apil, + vF, c3„„—1)]G ' = 0. If the lead-
ing logarithmic parts of G ' are apG ' ln" A, then

, din"A
tt'p G = s t crp tzpB~O + vF&B~ 1

d 1nA
AP P VF0

~n —1G —1 Inn
—1

where stap is the leading order (-np) part of q. By
explicit construction, G1

' does not depend on vF, . Then,
because of the factor apB —1, the right hand side is 0
for n = 2, implying Gz = 0. Thus, Eq. (10), applied to
successively larger values of n, implies that G„' = 0 for
all n ~ 2. The same should hold within the e expansion.

In summary, we have shown from a renormalization
group analysis that the coupling to a transverse gauge
field can destroy the Fermi liquid behavior leading to a
universality class with fermion operators having nontrivial
scaling dimensions for d ~ 3. We have also shown how
a systematic expansion in powers of e = 3 —d can be

carried out in a problem that superficially does not contain
a small expansion parameter due to infrared anomalies in
perturbation theory. In the future we plan to extend our
present analysis.
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