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Disordered Conductors
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An approximate percolation criterion for the multicomponent problem (when a condition of
connectedness depends on the "colors" of sites) is proposed and its relation to mean-field theory is
established. Its accuracy is discussed for several colored random-site- and lattice-percolation models.
An application to hopping allows for an approximate solution of various problems: e.g. , the hopping
conductivity in the range intermediate between the nearest-neighbor hopping and the variable-range
hopping regimes can be found for arbitrary shape of the density of states.

PACS numbers: 72.10.Bg, 72.20.—i

The percolation problem [1] is usually formulated on a
lattice, where a fraction of randomly chosen bonds (bond
problem), or sites (site problem) are destroyed (see re-
views [2]). Some generalizations of lattice percolation
for "polychromatic" models (with several sorts of sites
or bonds) were proposed, but their properties have been
described only in the few simplest cases [3,4]. There
are special percolation problems formulated on a set of
sites randomly distributed in space. One application of
random-site percolation is hopping —an incoherent trans-
port of electrons via randomly distributed impurities [5].
Here multicomponent generalizations occur very naturally
(e.g. , variable-range hopping [5,6]). An approximate per-
colation criterion for one special multicomponent random-
site model was proposed in [7]. Nevertheless, as in the
case of lattice percolation, no general approach to "col-
ored" random-site percolation exists. The aim of this Let-
ter is to introduce such an (approximate) approach for
both random-site and lattice problems.

Random-site percolation. —Consider randomly dis-
tributed sites of concentration N. The condition of
connectedness of two sites i and j is g(r; —r, ) ( g,
where g(r) is a connectivity function. Let us vary the
parameter g, keeping an eye on connected sites. At
low g there are only rare small clusters, while at large
g almost all sites are connected in one infinite cluster.
Hence at some critical $ = g„;„an infinite cluster must
appear for the first time, and a fraction of sites involved
in it vanishes at g = g„;t.

An average number of bonds for any given site is
B($) = NV(g), where V(g) =

f&t„l~& dr is a volume of
D-dimensional figure (g) restricted by the condition of
connectedness. The percolation is established when B
reaches some critical value:

B(kcrit) = NV(s crit) = Bcrit ~ (1)
For the isotropic case [spherical (g)], numerical calcula-
tions [8,5] have given B„;, = 2.7 and B„;, = 4.5. In

{D=3) (n =2)

the anisotropic case, B„,, may, in principle, depend on the
shape of (g). Numerical studies [8,9] have, however, re-

N, =cB, —bB, .

If a, b ) 0, then for g ( g,„;„there is only the trivial non-
negative solution N, —= 0, while at g = g,„;t a nontrivial
solution appears:

(3)

The threshold $„;t is determined by a condition
NV, ff($ 't) = 1/a, where V,ff($) is the maximal eigen-
value of the matrix

A„(g) = n, dr, n, =N, /N,

vealed a remarkable shape invariance of B„;„which gave
birth to an approximate "invariant method" [5,8,9].

Suppose now that we have several classes of sites
(labeled by a color index c), randomly distributed with
partial concentrations N, (the total concentration N =
g, N, ). The connectedness condition for sites i and j
depends now on their colors: g, , , (r; —r, ) ( $. Strictly
speaking, there is no general approach to this class
of problems, since the properties of the infinite cluster
may depend on the structure of the connectivity matrix
$„(r). In what follows, we propose, however, such a
general (though approximate) approach that takes care of
only one rough property of the infinite cluster —its color
composition N, .

Let us define active bonds of any given site as all links
that connect this site with those other sites (irrespective
of their color) that belong to the infinite cluster Then.
an average number of active bonds for a site of color
c is B, = g, N, f&,&,~~& dr. Our basic assumption is
that the probability P, —= N, /N, for a site . (of color c) to
belong to the infinite cluster depends only on such a rough
characteristic as B,. Then the color composition of the
infinite cluster N, is governed by a system of equations,
N, = N, F(B,). Close to the percolation threshold the
universal function F(B) may be expanded: F(B) = aB
bB2, and we arrive at the system of quadratic equations
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and the vector N('"" in Eq. (3) is the corresponding eigen-
vector. Comparing our condition with (1) in the color-
less case, we find a = 1/B„;„and finally our approximate
percolation criterion reads

NVeff(Scrit) = Bcrit ~ (5)
The crucial point of the above arguments is that only
the active bonds should be counted. Different bonds
contribute to the average connectedness criterion with
a weight N„which has yet to be determined self-
consistently and, in general, does not have to coincide
with the trivial one N, . The "naive criterion, " counting
all bonds, would lead to manifestly incorrect results
for cases with a strong color dependence. Generally,
the criterion (5) always somewhat underestimates the
percolation threshold, while the naive one overestimates
it. For example, in the variable circles model (see [8])
our criterion gives the critical concentration of circles
7.4% less than the simulations result, while the naive one
overestimates it by 13.5%.

The form of the function V,«(g) depends only on the
structure of g„(r) and on the partial concentrations n,
All the necessary information about the structure of the
percolation cluster is accumulated in the constant B„;„
which is postulated to be the same as in the colorless
case. Thus our procedure is an approximate mapping of
the colored percolation cluster onto an effective colorless
one. It is a generalization of the invariant method,
also implying the mapping of an anisotropic percolation
cluster onto an effective isotropic one.

There is a simple connection between our approach
and the mean-field theory (see [2,5]). Indeed, introducing
a multicomponent order parameter N, and writing an
effective free energy + near the percolation threshold as

= g n„($)N,N, + p p„,«($)N, N, N, +
cc' cc'c"

we find $,„;t as the point where a minimal eigenvalue
of the matrix n„(g) vanishes. The equations for N„
providing a minimum to the free energy, may be identified
with Eq. (2), if n„(se) [B„;tB„i/N, —V„i($)]. The
solution (3) is also of a mean-field type, and the index

P = 1 [N, cc (g —s,„;t)t'] is exactly the mean-field one.
The phenonenological Landau theory itself is unable to
specify the structure of n„i(g), while the present approach
gives an explicit form of the matrix n„(g), which allows
one to find the critical point g„;t and to single out the
critical mode N('"'~.

Lattice percolation. —Consider a colored lattice, where
each site has a color c, with probability n, (P, n, = 1),
and the probability p. .. of the bond occurrence within
a pair (ij) of the neighboring sites depends on their
colors. Introducing N, and B, by the analogy with the
random-site case, and repeating our arguments, we arrive
at Eq. (2) with B, = zg, p„N, (z being the lattice
coordination number), and find the percolation criterion

Xeff((ft) P) = Xcrit i (6)

where x,ff is the maximal eigenvalue of the matrix A„.
n, p„~. The value x„;, = I/za may be chosen to give
the correct result for the standard site problem, which
is a bicolored version of the present extended model
with p~2 = p2~ = p22 = 0, p]] = 1. For this model one
finds x,ff n

&

= x "", so x„;t may be identified with
(site)

the critical concentration x„;, of the site problem. Then
the criterion (6) gives the correct result also for Zallen's
model of polychromatic percolation [3], for which p„6„. Its exactness in this case is natural, because here the
infinite cluster consists always of sites of the same color.

The standard bond problem is a colorless version of the
extended model. Here x,ff = p]] = x( '" ~; thus our crite-
rion predicts the coincidence of the critical concentrations
for both standard versions of the percolation problem on

(bond) (si te)
any given lattice: x„;t = x„;, . The accuracy of this
relation is good for low-z lattices: 7%%uo for the honeycomb
lattice (z = 3), 9% for the diamond lattice (z = 4). It be-
comes poorer, when g increases: 25%%uo for the sc lattice
(z = 6), 60% for the fcc lattice (z = 12). The discrepancy
indicates a difference in the geometry of percolation clus-
ters for both problems due to bond correlations, present in
the site problem.

In the AB percolation model (see [4]) the sites
of opposite colors are linked in the bicolored lattice
(p~~ = p» = 0, p&& = p» = 1). The criterion (6)

(site)
gives x„,, = n„;t(I —n„;t), where n, „;t is the value of
n~ at which AB percolation occurs. From this relation it
follows, in particular, that AB percolation is impossible in

(si te)lattices with x„;, ) 1/2. Note that for bipartite lattices
this statement is rigorous [4]. Numerical simulations of
AB percolation in the sc lattice give n, „,t = 0.143 [4],
while our criterion gives n„;, = 0.109, which is 24% less.

Applications to hopping. —The standard problem of
hopping can be reduced to the colored random-site
percolation, where the color c; is identified with an
electronic level e; of impurity i, and the connectivity
matrix has the form [5]

2r E(e, e')
i r = —+

Oft T

lel + lel + le —e'I
E e, e'

2

T being the temperature, and a~ being the Bohr radius of
an impurity state. According to Eq. (4), we arrive at a
linear integral operator with a kernel

A(e, e') = n (e)v (g —E(e, e')/T ),
where n(e) = N(e)/N is the normalized density of states,
and v(x) = (7r/2D)(ax)oO(x). The average resistivity

P cc exP(se„;t), so calculating the maximal eigenvalue of
A(e, e') and then applying the criterion (5) one can, in
principle, find p for arbitrary T and N(e)

In the high-T, nearest neighbor-hopping limit, when
&r)/Tg(o) (& 1 and ~(o) (I/aft)(2DB, nt/mN) i
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the perturbative approach (s,„,, = $~ + s ~') + gl +
. .) can be used. In the first order it gives (~') = e3/T,

with an activation energy of the nearest-neighbor hopping
s3 = ((E(e, e')))„—:f de de' n(e)n(e')E(e, e'), coincid-
ing with the result of [10]. The second-order correction

crit

g„;, = (To/T)'~~ +'), To = P/N(0)a, . (7)

Numerical simulations [5,13] have given the constants
p@=3 21 .2 and ping =2

= 13.8. Let us demonstrate that
the criterion [Eq. (5)] reproduces the form of Eq. (7)
and gives a good approximation for the constant p.
Introducing dimensionless variables x —= e/Tg, we find

7r N (0)

where A/7=3 0.315, AD=2 = 0.430 are maximal eigen-
values, found numerically, of linear operators with ker-
nels hn(x, x') = [1 —E(x, x')] 9(1 —E(x, x')) (the corre-
sponding eigenfunctions are shown in Fig. 1). Substitut-
ing Eq. (8) into the criterion (5), we arrive at the expres-
sion (7) with p = 2DB,„;,/7r A, which gives ping=3 = 16.4
(23% less than the simulation result), and pr&=2 = 13.3
(4% less than the simulation result). In fact, the accuracy
of simulations in two dimensions (2D) is higher than in
3D, and therefore we expect the actual accuracy of our

(8)

t2) D —1((E(«') ))..
g(0) T2

D
(((E(«')E(~'e"))))- ~

g(0) T2

(where E = E —e3) consists of two parts. The first term
is the result of first-order perturbation theory, applied to
the second correction to A; it does not involve any cor-
rections to the composition N, and coincides with the re-
sult of the naive approach [5,11]. The second term is the
result of second-order perturbation theory, applied to the
first correction to A. It is due to corrections to the com-
position, N(e) ~ n(e)(1 —D &'T

' + . ), and is lack-%(~,~')).~

ing in the naive approach. This term rejects a tendency
to adapt a composition of the infinite cluster: Impurities
with high energies ~e~ may be forced out of the infinite
cluster due to their poor connectivity (positive E), while
impurities with low ~e~ (negative E) may increase their
representation. Therefore the true value of $,„;, must be
lower than in the naive approach. In agreement with the
conjecture [5,10], s,„,, may be expanded in momenta and
correlators of E(e, e'). While the first correction g~') is ex-
act, the numerical coefficients in both second-order terms
are not approximation-free; they depend on the form of
the approximate criterion (5).

At low temperatures the variable-range-hopping regime
[6,5] is developed, in which only levels within a narrow
energy strip, ~a~ ( AMgft(T) = Ts„;„contribute to the in-
finite cluster. A rigorous approach [5,12] to this case
leads to a special percolation problem in D + 1 dimen-
sions and

t

+Mott +Mott

FIG. 1. Normalized energy distribution N(e) for sites belong-
ing to the infinite percolation cluster in the variable-range-
hopping problem: AM„„ the width of the Mott's strip. Broken
line, the naive approach; full lines, the present approach (for
spatial dimensions D = 2 and D = 3).

approximation to be closer to 4% rather than to 20%.
Note that the naive criterion, implying that all the energies
within the Mott strip contribute to the infinite cluster with
the same weight, would give values of p 65% higher than
the numerical ones for both D = 3 and D = 2. The rea-
son for such an overestimation is clear: The actual energy
distribution N(e) is much narrower than the naive one (see
Fig. 1). So our method, being an exact one in the nearest-
neighbor-hopping regime, shows good accuracy also in
the opposite —variable-range-hopping —limit. Therefore
we expect it to work well also in the intermediate-T range.

Shklovskii and Efros (see [5], p. 343) have intro-
duced a different percolation criterion, also giving the
constant P~o=3) with high accuracy: They have postu-
lated the average volume fraction, 0 = (err, , /6)b, „d„ to
be invariant instead of the average number of bonds
B = (1)b,„d„and applied the naive approach to this in-
variant 0. In principle, their criterion may be improved
by taking into account only the active bonds: 0 0
(~r~j/6)„„„»„d„and by repeating our arguments, ap-
plied to 0 instead of B. This would make the criterion
more reliable than it is in its naive form. On the other
hand, it would also lower the predicted value of p, de-
stroying the agreement with numerical data. This fact
makes us think that it is 8 invariant, rather than 0 invari-
ant, that can serve as the starting point for the approximate
percolation criterion.

The same arguments may be addressed to the criterion
of Butcher and Hayden [14]. They have applied the
naive approach to the invariant 8, but the "constant"
B„;, they have regarded as a function of T, interpolating
between B„;, at high T and B,„;, at low T (since(D) (0+ l)

the energy e constitutes an additional dimension). The
improved criterion (5) demonstrates, however, a much
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better accuracy for B„;,= 8„;, than for B„;,= B„;,(~+~)

even for low T, indicating that the variable-range-hopping
percolation is rather effectively D dimensional.

For hopping with different sorts of impurities additional
colors of sites arise. In the model studied in [7], the spin
of electrons at each impurity was rigidly oriented. The
impurities belonged (with the same probability) to two
sublattices with opposite spin orientations, so that inter-
sublattice hops (involving spin-]lip processes) were rela-
tively suppressed, and one had the connectedness criterion

$„,,r(r) = g„~(r) + A„i, with additional color c = 1, 2,
and with 6 ~ ~

= 622 = 0, 6 ~2
= A2~ = A. The present

method enables one to consider arbitrary concentrations
N&, N2 of impurities in sublattices. It leads to a system of
two linear integral equations with the kernel

A„(e, e') = n, (e)U(sc —6„—E(e, e')/T).

There is a surface (determined by the condition g„;, = 5)
in the (T, Nt t N2) space, separating the domains of the bi-
colored regime (high resistance, low N, T) and the single-
colored one (low resistance). At very low concentrations
(deep in the bicolored regime) the impurities of both sub-
lattices participate in the infinite cluster with their "nat-
ural" weight N, . Upon increasing N, the discrimina-
tion of the sublattices occurs, and, finally, at N ~ N„;„
the intersublattice hops are totally suppressed, the perco-
lation cluster consists of one dominant color only, and

Ecl'lt. gcflt(max(Nt Nz)) ~

Recently the problem of hopping with an additional
color arose in connection with a system where a double
occupancy of impurities is allowed [15]. Our criterion,
being applied to this problem, would also lead to a system
of two coupled linear integral equations.

In conclusion, we consider the high accuracy of our
method in the applications discussed as an indication that
the percolation clusters in these cases do not differ much
from the colorless one. Counterexamples, of course,
also exist, but even there our theory gives qualitatively
correct results. The quantitative accuracy of our criterion
may be ad hoc improved by the proper choice of
a reference model: One should choose an appropriate
simple percolation model, whose solution is known, and

map a more complex problem onto it. For example, we
could have normalized the lattice version of our criterion
by the bond problem rather than by the site problem.

The field of possible applications of the present method
is vast. We mention here only the properties of is-

land films and polydisperse composites, polycrystalline
growth, and dynamics of random populations.

The author is indebted to L. I. Glazman and B.I.
Shklovskii for discussions which have stimulated this
work, and to M. M. Tsypin for the help with numerical
calculations.
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