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Commensurate and Incommensurate Ordering Tendencies in the Ternary fcc Cu-Ni-Zn System
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We show that Fermi-surface (FS) nesting drives both the incommensurate and commensurate ordering
tendencies of the fcc ternary Cu-Ni-Zn system. Surprisingly, commensurate order persists over a

wide range of composition, despite its origins.

For Cu,NiZn, we discuss how FS nesting and the

other effects of alloying lead to ordering tendencies consistent with the experimentally observed order-
disorder transformations. All calculations are based on a first-principles theory of the atomic short-range
order in alloys with an arbitrary number of components.

PACS numbers: 71.20.Cf, 64.60.Cn, 75.40.Cx

While there has been much work on long- and short-
range order in binary alloys [1-3], very little theoretical
insight has been developed for ternary (or, more gener-
ally, N-component) systems [3]. As a step toward un-
derstanding the basic driving forces in such systems, we
have developed a first-principles theory of atomic short-
range order (ASRO) in alloys of an arbitrary number of
components [4] and here apply it to the Cu-Ni-Zn system.
The fcc ternary system Cu-Ni-Zn is especially interest-
ing because it exhibits a wide range of ordering tenden-
cies: both incommensurate and commensurate chemical
ordering and phase separation [5—8]. We show that the
chemical ordering, both incommensurate and commen-
surate, is driven by Fermi-surface (FS) nesting effects,
contrary to what has been assumed by previous authors
[9-11]. Surprisingly, commensurate order persists over a
wide concentration range, as observed [6], despite its FS
origin. We first focus on the ASRO and order-disorder
transformations in the experimentally well-characterized
alloy Cu,NiZn and then discuss how changes in the alloy
composition affect the ASRO through their influence on
the FS properties. Note that since we are working with
ternary alloys the composition and electron per atom ratio
(e/a) can be varied independently.

It is known experimentally that a variety of commen-
surate and incommensurate ASRO exists in the Cu-Ni-
Zn system. Van der Wegen et al. [8,12] observed that
Cu,NiZn undergoes two first-order phase transitions. The
first, at about 774 K, is from a (disordered) fcc solid solu-
tion to a partially ordered modified L1, structure in which
the Zn atoms preferentially occupy the corners of the fcc
cube, with the face centers randomly occupied by Ni and
Cu. In the second transition, at about 598 K, the occu-
pations of the face centers order to a fully ordered modi-
fied L1, (modified Heusler) structure. Hashimoto et al.
[9] performed diffuse x-ray scattering experiments on a
Cuy;NiygZn,, sample quenched from 875 K to determine
the ASRO and find (100)-type ASRO. They dismissed
the possibility of the FS being the origin. Experimentally
[6], long-range order of (100)-type occurs around the line

138 0031-9007/95/74(1)/138(4)$06.00

in the Gibbs triangle that connects the binary NiZn with
pure Cu. Along this line, all alloys are isoelectronic with
Cu, with Cu,NiZn sitting on this line. Moving off this
line, Reinhard er al. [7] have measured incommensurate
ASRO indicative of DO,;-type order in Cu-rich fcc bi-
nary CuZn. On the other side, CuNi is a clustering alloy,
showing & = 0 ASRO [5,13].

Our first-principles theory of ASRO for a multicom-
ponent alloy is a mean-field theory of concentration
fluctuations [1,14], and uses the multiple-scattering
electronic-structure method of Korringa, Kohn, and
Rostoker (KKR) combined with the coherent potential
approximation (CPA) and (local) density functional
theory to evaluate the electronic grand potential of the
random state. A version of the theory for binary alloys
has only recently been discussed [15,16] and some
review and results for several binaries are presented in
Refs. [2,15,16]. Because the theory is based directly on
properties of the alloy electronic structure, it is possible to
pinpoint the microscopic origins of the observed ordering
tendencies in order to develop insight into the role of
various, sometimes competing, effects, e.g., electronic
structure, atomic size, and charge transfer.

Any alloy configuration can be specified by a set
of occupation variables {&}, where & is 1 (0) if an
a species atom does (does not) occupy site i. The
thermodynamic average (£{) = c¢f is the concentration of
species «a at site i. The {£*} are not all independent—we
implement the single-occupancy constraint by designating
the Nth atomic species as the “host” and considering
the host occupation £ as a dependent variable. The
ASRO is described by the atomic pair correlation function
(a matrix in the species and site indices), defined as
g, = (&l €]y — (£'X¢&]), which is related to the familiar
Warren-Cowley short-range order parameter

QBy(lz)
g (557 - CY)
derived from experiment. The theory yields directly a
nonsingular portion of the inverse of the lattice Fourier-

apy (k) = )
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transformed correlation function matrix, q’“’(l?), i.e., [4]

g7 (K T)]py = [a,wci + i}

“ CN
- BISAk:T) — 2,,(D)], @

where B8 = 1/kpT and T is the absolute temperature. The
central quantity of the theory is S2), which embodies all
properties of the electronic structure, including electron-

hole effects. Explicitly, S ,52,3(12) is the Fourier transform

of
2
S’ =~ (———~—a m‘?)‘)) : 3)

M v
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where (Q,)o is the electronic grand potential averaged
with respect to a single-site probability distribution, as
in [2,4,15,16], and is calculated within the KKR-CPA
formalism. In the present work, we keep only the “band-
energy”’ contributions to the second derivative, and defer
a full treatment of the “double-counting” and displacive
contributions to a later work. The quantity 2 ,, is the
Onsager cavity-field correction to the mean-field theory,
which ensures that the spectral intensity is conserved
over the Brillouin zone, atypical of mean-field theories,
and is discussed in Refs. [15,16]. The coupled integral
equations that determine both S?(k) and g, are more
general than those of the binary-only case—but, it turns
out, no more difficult to implement—further details will
be discussed in a forthcoming publication [4].

At the wave vector ko and spinodal temperature T,
the determinant of the inverse of the correlation func-
tion matrix [Eq. (2)] vanishes, signifying that the high-
temperature, homogeneously disordered state is unstable
to the formation of a concentration wave with wave vector
ko. Although most order-disorder transformations in al-
loys are (experimentally) first-order transitions, the ASRO
observed at high temperature is frequently a precursor of
the low-temperature long-range order. In practice, T, is
often close to the experimentally observed transition tem-
perature [14—16]. The eigenvector of Sl(fg(ko,Tsp) cor-
responding to the vanishing eigenvalue of ¢~' describes
the polarization of the concentration wave in composition
space [4,17]. From the polarization and the wave vector
ko, the atomic distribution may be determined [4,17].

In Fig. 1(a), we show the off-diagonal components
of the Warren-Cowley matrix for Cu,NiZn along the
lines W to X to I' in the fcc Brillouin zone at a
temperature approximately 10% above Ty,. The squares
correspond to our calculated points, and the lines are
obtained by first finding a least-squares real-space (lattice
Fourier series) fit to the calculated S ﬁ)y(ic') and then
calculating the corresponding aﬁy(lz). The real-space
fit, in principle, yields real-space interaction parameters,
which are sometimes useful in interpreting the results.
For Cu,;NiZn, we are able to achieve an exceptional fit
with 35 nearest-neighbor shells. The Ni-Zn correlation
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FIG. 1. The Ni-Zn (- - -), Cu-Zn (---), and CuNi (—) Warren-
Cowley SRO parameters in Laue units for (a) Cu;NiZn and
gb) CuNi,Zn. The squares (lines) are the calculated points in
k space (the real-space fit, see text).

is clearly the strongest and is sharply peaked at k=
(100). The much weaker Cu-Zn interaction also favors
(100) ASRO. Since binary Cu-Ni clusters [5,13], it is
interesting that the Cu-Ni correlation is almost zero at
the X point, goes negative as the temperature is lowered
further, and has a maximum at k = (000), indicative of
the clustering tendency. Because of this very strong Ni-
Zn correlation, we expect that the system will undergo a
transition to a state with (100) long-range order in which
the Ni and Zn atoms occupy different sublattices.

The off-diagonal Ni-Zn component of the calculated
correlation function matrix for Cu,NiZn diverges at kg =
(100) and T, = 980 K (1240 K without Onsager correc-
tions). The corresponding eigenvector of S @ describes a
structure composed of four interpenetrating simple cubic
lattices, where on one sublattice the probability for find-
ing Zn is greatly enhanced and the probability for finding
Cu or Ni is correspondingly reduced; on the remaining
three sublattices the situation is reversed. This is consis-
tent with the partially ordered modified L1, structure seen
experimentally [8,12]. Further, given k¢ and the alloy
composition, the theory of concentration waves [14] con-
structs, on the basis of symmetry alone, the fully ordered
modified L1 structure seen experimentally [4]. Since this
partially ordered state has a different atomic distribution
than the fully ordered state, a second transition to the fully
ordered state will take place, provided there are no inter-
loper phases. Because of the strength of the Ni-Zn corre-
lation, it is unlikely that any such interloper phases exist.

While our results agree qualitatively with the experi-
mental results of Hashimoto er al. [9], a detailed quan-
titative comparison is impossible for two reasons. First,
the experimental data strongly violate the sum rules gov-
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erning the integrated diffuse intensities over the Brillouin
zone, as noted by Hashimoto et al. [9]. Within our calcu-
lations, these sum rules are enforced via the Onsager re-
action field %,,. Second, the values of the partial diffuse
intensities found in the experiment are an order of magni-
tude larger than what is typically seen that far above T,
and are indicative of ASRO at a temperature much closer
to 7. than the temperature from which the sample was
quenched. Of course, if in our calculation we lower the
temperature closer to the spinodal, we too find very large
values of the ASRO at (100).

When the ASRO arises mainly from electronic structure
near the Fermi level, it is instructive to write S l(f) approxi-
mately as [2,18]

— !
52(q) ~ f a’e/ de'M,“,(e)ILEE)—_—fLE—)

e’

v
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where M, (€) is a species- and energy-dependent matrix
element and A(I;; €) is the Bloch spectral function (BSF)
[2]; in such a picture S f) has the appearance of a general-
ized susceptibility. The presence of the Fermi factors and
energy denominators in (4) can lead to a large contribu-
tion from energies near the Fermi level; A(k; er) describes
the “Fermi surface” of the random alloy. Thus, if the FS
and its image shifted in reciprocal space by the wave vec-
tor Q have a large overlap, a large value of S ff,,) at that
wave vector (and all symmetry related wave vectors) will
result. Within this framework, this is a mathematical state-
ment of the FS nesting ideas discussed by Moss [19]. In
general, Q is not a high symmetry wave vector and is in-
commensurate with the lattice periodicity—this leads to
the familiar fourfold splitting of diffuse scattering peaks
as seen, for example, in CusZn [4,7]. In contrast, if Q is
a high symmetry point, FS nesting leads to commensurate
order. One would expect that this would be most unusual,
but it is indeed what we find for Cu;NiZn and other alloys
isoelectronic with it.

In Fig. 2, we plot the BSF at the Fermi energy (the alloy
FS) for disordered Cu,;NiZn in the k, = 0 plane. The FS is
very boxlike and is broadened by disorder. This disorder
broadening actually serves to increase the overlap between
A(k; er) and A(k + ko; €r), leading to a large value of the
convolution integral (4) for ky, = (100). The flat portions
of the FS in the k, = O plane evident in Fig. 2 extend
out of the plane for some distance. Alloying changes the
familiar “dog-bone” structure of the pure Cu FS [20] into a
“bow tie” structure with flatter edges, further enhancing the
nesting. This particular feature improves the nesting for
the incommensurate cases, e.g., CuNi,Zn. The Fermi level
lies in the s-p bands for this alloy, and it is the common
s-p band that plays a large role in establishing the ASRO.

As the alloy composition changes, two important fea-
tures of the FS change. In some crude sense, when the
Fermi level lies in the s-p band, the dimensions of the
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FIG. 2. Contour plot of the Bloch spectral function in the first
Brillouin zone for Cu,NiZn at the Fermi energy, i.e., the alloy
Fermi surface, in the k, = 0 plane.

FS (e.g., the nesting vector, if there is one) depend pri-
marily on e/a. Indeed, as the alloy composition is var-
ied along the line in the Gibbs triangle for which e/a
is constant and equal to that of pure Cu, we find that
the magnitude of the nesting vector is approximately con-
stant and that FS nesting leads to (100)-type ASRO. The
shape and sharpness of the FS do change, which affects
the extent of the nesting and changes Ti,. This is illus-
trated in Fig. 3, where we show our results for several
alloys of the Cu-Ni-Zn system. In agreement with experi-
ment [6], we find a broad region of (100) ASRO along
the line Cu,(NiZn);_, (the Cu-isoelectronic line), as evi-
denced by our results for Cu,NiZn, CuNiZn, and NiZn.
The extent of the region of (100) ASRO is roughly indi-
cated by our results for CuzNi3;Zn, and CuNiZn,, which
both show (100) ASRO. Calculations for binary NiZn [4]
also show (100) ASRO, consistent with the observed [5]
L1, ground state, although there is experimentally [S] an
entropy-driven ordered B2 phase at high temperatures.

As one moves off of the Cu-isoelectronic line, changing
e/a, the volume enclosed by the FS changes and so the
magnitude of the nesting vector must ultimately change,
leading to incommensurate ASRO. As we move away
from Cu,NiZn along the line Cu3_,Ni,Zn, we find in-

FIG. 3. Gibbs triangle of the Cu-Ni-Zn system in atomic
percent. The dotted line is the Cu-isoelectonic line. The
ASRO we find is as follows: squares, (100) ASRO; circles,
incommensurate ASRO; hexagon, & = (000) ASRO.
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commensurate ASRO for Cu3Zn (as seen experimentally
by Rheinhard et al. [7]) and for CuNi,Zn, as shown in
Fig. 3. This gives some idea of where the boundary of the
region of (100) ASRO lies, and is in good agreement with
experiment [6]. In the Zn-poor region, we find clustering
tendencies for binary CuNi [4], in agreement with experi-
ment [5,13]. Experimentally, in the Zn-rich region of the
phase diagram, there are found both bcc and hcp phases;
we are currently investigating different crystal structures,
and we are interested here only in the fcc phases.

To illustrate the effect of decreasing e/a, in Fig. 4 we
show the FS for CuNi,Zn. The FS is strongly nested
(i.e., boxlike), and broader than that of Cu,;NiZn. In
this case the volume enclosed by the FS has decreased
and the ASRO has become incommensurate, with a
dominant wave vector of approximately (0,0.1,1) and a
T,, of 485 K. In Fig. 1(b), we display the off-diagonal
components of the Warren-Cowley matrix for CuNi,Zn
along the lines Wto X and X to I" in the fcc Brillouin zone,
again calculated at 10% above T,. The Ni-Zn correlation
is once again the strongest, but peaks at k = (0,0.1,1.0).
As for Cu;NiZn, the squares are the actual calculated
data and the lines are ag,(k) obtained from the real-
space fit to S}f,}(/:). For CuNi,Zn the quality of the
fit is much poorer (even with the 50 shells used here)
than for Cu;NiZn. The FS origin of these interactions,
especially in the case of incommensurate ASRO, requires
extremely long-ranged real-space interactions in order to
reproduce the correlation function. As a result, while it
is possible to reproduce the observed long-range order
for Cu,;NiZn with only two nearest-neighbor interactions
[3,10] or short-range cluster interactions [11], such a
model will not describe the ternary system in general.

In conclusion, we have implemented a first-principles
mean-field theory of ASRO in alloys of an arbitrary num-
ber of components, and applied it to several fcc Cu-Ni-
Zn alloys. We have determined that the commensurate
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FIG. 4. As in Fig. 2, but for CuNi,Zn.

k= (1,0,0) ASRO arises due to FS effects and persists
over a region surrounding the Cu-isoelectronic line, in
agreement with experiment [6]. Elsewhere we find in-
commensurate ASRO, as expected from FS dimensions.
For Cu,;NiZn, we find ASRO in the disordered solid so-
lution that is consistent with the partially ordered phase
at high temperatures, and, because of the strength of the
Ni-Zn interaction, symmetry arguments alone require that
the modified L1, structure is stable at low temperatures.
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