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Equation of State and Shear Strength at Multimegabar Pressures:
Magnesium Oxide to 227 GPa
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The equation of state, elasticity, and shear strength of magnesium oxide were examined to 227 GPa
using synchrotron x-ray diffraction in a diamond anvil cell. Static compression, ultrasonic elasticity,
and shock data for MgO from ambient pressure to above 200 GPa can all be described by a single
Birch-Murnaghan equation of state when the static shear strength, which is determined to be at least
11 GPa at 227 GPa, is taken into account. Our results show that there are significant changes in the

degree and character of the elastic anisotropy of MgO at high pressure.

PACS numbers: 62.50.+p, 64.30.+t, 64.70.Kb

Understanding the physics of materials at ultrahigh pres-
sure is an important focus of current work in condensed
matter science. The equation of state (EOS) and phase sta-

bility are the most fundamental properties obtained from
these investigations. The reliability of equation of state
determinations at large compressions is uncertain because
the stress state at multimegabar static pressures is not well
understood [1,2]. Shear strength provides a fundamental
description of a material's mechanical behavior, but little
is known about this quantity under high static pressures
[2,3]. Upon compression, the stress state of all solids is
nonhydrostatic when the sample has finite strength. If un-

corrected, the presence of shear stresses can lead to system-
atic errors in the resulting bulk modulus and its pressure
derivative [4,5]. Shear strength effects can also introduce
errors in measured pressures when secondary calibrants
(e.g. , ruby fluorescence or diffraction standards) are used
[6]. As a result, there are typically discrepancies in equa-
tions of state determined by different techniques. In this
study, we examine a low-Z prototype material (magnesium
oxide) by x-ray diffraction at pressures above 200 GPa
and provide the first determination of shear strength un-

der such conditions. When this strength is taken into ac-
count, a single equation of state can describe ultrasonic,
shock, and static compression data for this material. We
show that it is possible to characterize material strength
and elastic anisotropy at ultrahigh pressure directly from
diffraction data.

Magnesium oxide is an ionic solid that has been widely
studied at high pressure and is a prototype for developing
and applying first-principles theoretical methods to oxides
[7,8]. MgO has also been extensively employed in the
development of experimental methods for shear strength
determination at low pressures (to 40 GPa) [5,9,10]. A
major problem with current data, however, is that equations
of state from shock, ultrasonic, and static experiments
are not mutually consistent [11]. Furthermore, theoretical
models for MgO have been complicated by questions
concerning the degree of ionicity and characterization of
the charge distribution of the oxygen atoms [7,8].
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FIG. 1. Energy dispersive x-ray diffraction pattern of MgO at
209 GPa. The spectrum was taken in 150 min.

Structural studies of materials at multimegabar pres-
sures have largely been restricted to high atomic weight
materials, due to the difficulty of performing x-ray diffrac-
tion on the extremely small volumes which can be sub-
jected to such pressures. We show that with synchrotron
radiation methods x-ray diffraction can be carried out on
MgO, a low-Z oxide, to pressures in excess of 200 GPa.
We also show that MgO remains in the Bl (NaC1) struc-
ture to these ultrahigh pressures, unlike other oxides
which undergo pressure-induced phase transitions under
moderate pressures [12].

MgO (99.998% purity) was mixed with 5 wt. %
molybdenum and compressed in a Mao-Bell diamond
anvil cell with beveled diamonds having central Oats
of 19.5 and 49.8 p, m. Energy-dispersive synchrotron
x-ray diffraction was carried out using superconducting
wiggler radiation [13]. Figure 1 shows a representative
x-ray diffraction pattern. For MgO, the (200), (220), and
occasionally (420) peaks were resolved. Pressures were
determined from Mo diffraction lines using an isotherm
derived from shock data [14]. The pressure-volume
relation is shown in Fig. 2. The range of stability
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FIG. 2. Pressure-volume data for MgO. The filled symbols
are static compression data (circles —this study, triangles—
[20]), and the open symbols are from shock compression (cir-
cles —single-crystal [16,17], squares polycrystalline [18]).
The solid line is a third-order Birch-Murnaghan fit to the
present data. The dashed line is a third-order Birch-Murnaghan
extrapolation of ultrasonic data. The dash-dotted line is a
fourth-order Birch-Murnaghan fit to the combined ultrasonic
and reduced shock data. The inset shows pressure versus the
difference in the lattice parameters determined from the (220)
and (200) diffraction lines.

predicted by theory for MgO in the 81 structure has
varied widely (100—1000 GPa) (e.g. , [7,8]). Our results
show the Bl structure is stable to at least 227 GPa
(V/Vp = 0.612) at room temperature, demonstrating the
remarkable stability range of MgO in this structure.

Ultrasonic sound velocity measurements [15] on MgO
single crystals to 3 GPa yield high-precision values of the
isothermal bulk modulus (Ivor = 160.3 +. 0.3 GPa) and
its first pressure derivative (Kpr = 4.15 ~ 0.10). Using
these parameters in a third-order Birch-Murnaghan equa-
tion yields the equation of state shown in Fig. 2. Shock
compression data for MgO have been reported to 199 GPa
[16—18]. At low pressures, where thermal effects are
negligible, the single-crystal Hugoniot results are con-
sistent with extrapolated ultrasonic data (Fig. 2). Mie-
Griineisen theory [16] was employed to reduce the shock
data, and a Birch-Murnaghan equation fit to the result-
ing isotherm yields K» = 157 ~ 7 GPa and KpT = 4.3 ~
0.2, in agreement with ultrasonic values. A combined fit
to the reduced shock and ultrasonic data, in which KpT
and KpT are fixed, constrains the second pressure deriva-
tive of the bulk modulus, Kp'T = —0.022 0.004 GPa
This yields a fourth-order Birch-Murnaghan EOS which is
slightly less compressible than the third-order fit (Fig. 2).

Recently, static compression data for MgO have been
obtained to 23 GPa under quasihydrostatic conditions
in the diamond cell using neon as a pressure medium
and NaC1 as an internal standard [19]. A third-order
fit to these data yields KoT = 4.2 ~ 0.1 (««oz. =
160.3 GPa and Vp = 11.253 cm3/mole). Thus static data
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].r = —, (~3 —~i). (2)

A quantitative determination of the shear stresses in
our sample may be made in two ways. The first method
utilizes the dependence of the lattice parameter on crys-
tallographic direction. The difference in lattice parame-
ters determined from the (220) and (200) MgO lines are
shown as a function of pressure in Fig. 2 (inset). With
increasing pressure, the lattice parameter from the (220)
diffraction line is systematically larger than that from the
(200) line by an amount that increases from —0.1% at
100 GPa to 0.9% above 200 GPa.

From linear elasticity theory, the following expres-
sions describing the lattice strain in a nonhydrostati-
cally compressed cubic sample in the diamond cell can
be obtained [1]:

E (hkl) = ep — (1 —3 sin 0)
2~ 2

3

1 A'x a(S„—5„—3SI ) +, (3)
2G~

a„,(hkl) aoI
Qp

(4)

S = (W —1),
2

h2g2 + g2)2 + I2h2

(h2 + k~ + l2)~

under nearly hydrostatic conditions are also consistent
with the ultrasonic and reduced shock data. The vol-
umes predicted by theoretical methods [7,8] differ from
the combined shock and ultrasonic equation of state by
only 2% or less at pressures near 200 GPa. A third-order
Birch-Murnaghan fit to the present static compression data
yields KpT = 177 ~ 4 GPa and KoT = 40 —0-1.
differs markedly from the ultrasonic, shock, and quasihy-
drostatic compression data (Fig. 2). The ambient-pressure
bulk modulus is 10% larger than the ultrasonic value, and
the volumes are 1.5% larger at 150 GPa. Other static
compression data for MgO under nonhydrostatic stress
[20] also yield high bulk moduli (-180 GPa) and P V-
states above the inferred hydrostatic compression curve.

The role of nonhydrostatic stresses in opposed anvil
devices has been discussed in detail [1]. The principal
stress in the load direction o-3 is greater than the stress in
the radial direction o ]. In the diamond cell geometry, the
incident x-ray beam travels along the load direction and
the diffracting plane normals are nearly at right angles to
the load axis. Thus diffraction measures strain near the
direction of minimum principal stress. The pressure is
given by

03 + 267&

3

and, assuming a von Mises yield condition, the shear
strength r is [1]
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Here e (hkl) is the lattice strain (which along with
the stress is taken to be negative in compression) and,
in general, is a function of the Miller indices hkl of
the diffraction plane. a (hkl) is the measured lattice
parameter for a given (hkl) and ao is the ambient-pressure
lattice parameter. ep is the lattice strain produced by
the mean normal stress, 0 is the scattering angle, and
Gv is the Voigt bound on the shear modulus. The
parameter n ranges from 0 for conditions corresponding
to constant strain across grain boundaries in the sample
(Voigt limit) to 1 for continuity of stresses (Reuss limit).
The quantity 5 is a measure of the elastic anisotropy
with A = 2(Stt —Stq)/S44 and the S,, s being the elastic
compliances.

Using (3)—(6), the shear strength of the specimen
can be related to the difference in the measured lattice
parameters of the (200) and (220) diffraction lines by

—2[a (200) —a (220)]
aaoS(l —3 sin 0)

Dependence of the lattice parameter on (hkl) is pro-
nounced in MgO above 100 GPa (Fig. 2, inset). This
arises from changes in the product 5~ at high pressures.
Assuming n = 1 in (7) yields a lower bound to the
sample shear strength. 5 is constrained experimentally to
3 GPa from single-crystal elasticity data [15]. Linear ex-
trapolation of the elastic constants implies a change in the
sign of S at about 20 GPa (Fig. 3). This implies that the
strongest direction in MgO changes from [111] to [100]
at high pressure and the softest direction becomes [111]
rather than [100]. We also determine S from elastic con-
stants of MgO to 150 GPa from first-principles model cal-
culations [8] (Fig. 3). While the theoretical calculation
overestimates the 1-bar value of 5, its initial slope is con-
sistent with the ultrasonic data. The calculated anisotropy
reaches zero at about 45 GPa, and becomes increasingly
negative at higher pressures. According to (7), the larger
lattice parameter from the (220) line relative to the (200)

3
p (Px ray Phydrostat) ~ (8)

The shear stresses calculated by this procedure (Fig. 4)
indicate that MgO can sustain increasing shear stresses
to at least 100 GPa. Our results are also consistent with
static shear strengths determined in earlier, low pressure
studies of MgO [5,9,10] (Fig. 4). At higher pressure,
we find that shear stresses continue to increase, reaching
values of -10 GPa at pressures of 60—100 GPa.

The two methods of shear stress determination yield
consistent results. Those obtained using (7) lie below
values obtained from pressure offsets, as expected for

25

20—

line can only be explained by a negative value of 5. This
provides direct experimental evidence for a fundamental
change in the nature of the elastic anisotropy of MgO at
high pressure. A lower bound to the shear strength was
determined from the measured difference in the (200) and
(220) lattice parameters using the theoretical values for S
(Fig. 4). A quadratic fit to the shear strengths determined
from the individual data points is shown in the figure.
This curve yields a minimum shear strength of 5 GPa at
100 GPa, increasing to at least 11 GPa at the highest pres-
sure (227 GPa).

The second quantitative measure of the sample shear
strength can be made from the pressure difference at a
given volume achieved under nonhydrostatic and hydro-
static compression. The hydrostat was taken from the
fourth-order fit to the combined ultrasonic and shock
data (Fig. 2). Assuming the pressure determined from
the Mo equation of state represents the mean pressure
in the sample and that sample behavior is isotropic, the
shear strength is given by [2]
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FIG. 3. Elastic anisotropy 5 as a function of pressure for
MgO. The circle is from ambient pressure data, and the dashed
line shows the result of linear extrapolation of ultrasonic
elasticity data [15]. The solid line is calculated from theory [8].

FIG. 4. Shear strength of MgO as a function of pressure.
Filled symbols show shear stresses computed from the lattice
parameter differences and elastic anisotropy of Figs. 2 and 3.
Solid line is a fit to these data. Open symbols ( circles —this
study, triangles —[20]) show shear stress determinations from
pressure offsets of Fig. 2. Data above 100 GPa are not shown
because of large uncertainties in volume. The hatched region
is from Ref. [10]. The dashed line shows the predicted ideal
strength of MgO.
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a lower bound. The large pressure offsets observed at
60—90 GPa and the relatively small difference in lattice
parameter at these same pressures can be consistently
explained by a material which is nearly elastically isotropic
at these pressures, as inferred from the first-principles
results. At higher pressures, the difference in lattice
parameter increases as a consequence of increased shear
stress and/or increased elastic anisotropy. Use of (7)
has the important advantage that the shear strength is
determined directly from the properties of the sample, and
does not rely on an inferred hydrostat or the EOS of a
marker material in contact with the sample.

The ideal strength of MgO is approximately 3.5% of
the shear modulus [21]. Using the pressure dependence
of G from ultrasonic data [15], the MgO shear stresses
are compared to this limit in Fig. 4. At 60—90 GPa, the
strength of MgO approaches the theoretical limit of the
solid. In rhenium, the static strength has been observed
to approach 4% of the shear modulus at pressures of
-100 GPa [2] which compares to an ideal strength of 5%—
10% of the shear modulus in this material. The shear
strength of MgO increases by at least an order of magnitude
from ambient pressure to 200 GPa. By characterizing
this strength, we find that a single equation of state is
consistent with a wide variety of experimental data for
this fundamental material. The techniques described here
should find wide applicability in the analysis of other
ultrahigh pressure diffraction data.
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