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Is a Layered Medium One Dimensional' ?
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In the study of wave transport, a randomly layered medium is generally considered one dimensional
due to its localizing character in the layering direction. However, we show that when the system is
perturbed by the addition of a small amount of isotropic randomness, wave propagation in the direction
parallel to the layers can exhibit significant leakage out of the localizing layers. Numerical study of this
phenomenon in 2D anisotropic models reveals the existence of wave-energy tunneling via evanescent
waves in the layering direction, which gives rise to finite-size scaling behavior intermediate between 1D
and 2D.

PACS numbers: 42.25.Bs, 03.40.Kf, 63.50.+x

H= a~a a~+ t a ap, (1)
A'

I ~,P1
where t = 1 is the hopping matrix element, n, p are the
site indices of a simple square lattice on the x-z plane,
[cr, p] indicates a and p are nearest neighbors, and

=n. +v (2)
is composed of two components: g, is a number that is a
constant for all x and fixed z, but that varies randomly as
z varies with a flat distribution

1/w, i~ i w/2,
0 otherwise.

y is a random number that varies independently from
site to site with a fiat distribution

p ( )
1 /W2 ( y ) W2/2, (4)0 otherwise.

(3)

A randomly layered medium has identical wave local-
ization behavior as a 1D chain for waves propagating in
the layering direction, i.e., the direction perpendicular to
the layers. Moreover, localized eigenstates in the layer-
ing direction define "channels, " in which the wave energy
is confined for waves propagating parallel to the layers.
Thus, the confinement of wave energy in the layering di-
rection, regardless of the propagation direction, is indica-
tive of the 1D character of a randomly layered medium.

In this Letter, we show that the confinement of wave
energy in channels is unstable against small perturbation
of additive isotropic randomness. Physically, a layered
medium with additive isotropic randomness describes, for
example, the Earth's subsurface of random superlattices
with inhomogeneities. In the presence of isotropic ran-
domness, wave energy initially localized (in the layering
direction) in a particular channel can be significantly delo-
calized via the mechanism of tunneling between the chan-
nels. However, the tunneling is not symmetric: There
exist dominant channels that attract wave energy from th-
others [1]. The resulting wave amplitude distribution is
thus nonergodic and exhibits a finite-size scaling behavior
that is intermediate between 1D and 2D.

Consider the 2D tight-binding Hamiltonian

E = F., + 2cosk ao, (5)

where ao = 1 is the lattice constant. By definition, each
channel is associated with a unique E, . When ~E-
E, ~

) 2, k, is imaginary and the channel is denoted
"evanescent. " When ~E —E, ~

( 2 and k, is real, the
channel is denoted "propagating. " In a geometry where
the sample [defined by Eqs. (1)—(4)] is connected to the
left and to the right with perfect leads, i.e., W] = W2 =
0, the evanescent and propagating modes describe the
incident and transmitted waves.

In the presence of a small amount of isotropic random-
ness, e.g. , W2 = 0.1Wl, the localizing character of the ran-
domly layered media [2,3] is not appreciably altered for
waves propagating in the z direction: When Wl = 15 and
Wq = 1.5, g~ is increased to -1.4 from its value of —1.2
at W2 = 0. This calculation can be carried out numeri-
cally by using the recursive Green's function approach
[4] on a strip of width M in the x direction and length
L» M in the z direction. The value of g~ is found to
saturate at -1.4 when M is increased to -50. For waves

In other words, q, represents the random layerings and

y the additive, isotropic randomness. In the limit of
W2 = 0, we have a randomly layered system. Along the
layering direction (z axis), eigenvalues and eigenfunctions
of H can be simply obtained by the diagonalization
of H. We would like to study the case where the
layering randomness is strong, i.e., Wl large, in which the
eigenfunctions will be highly localized with a localization
length g& = 1 —2 layers. Even in this case, however,
an important point to be noted is that the eigenfunctions
can still have significant spatial overlaps; although in the
absence of isotropic randomness they are orthogonal to
each other in the sense that if initially only a particular
eigenfunction is excited, waves will propagate in the
x direction as in a waveguide, i.e., confined in the
z direction. We define the localized eigenfunctions as
channels for waves propagating in the x direction.

For a layered 2D system, the wave energy can be
written as
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propagating in the x direction, however, qualitatively new
phenomenon is found. The same recursive Green's func-
tion approach can be applied here, with width M of the
strip now defined to be in the z direction, and the length
L in the x direction. For L sufficiently large, g~~ can be
accurately obtained for each single configuration. Since
one can obtain a localization length for each channel, the

s~~ for each configuration is given by the largest localiza-
tion length among all the channels in that configuration
t5]. As the layering randomness g, is changed from one
configuration to the next, the values of s~ thus obtained
form a peaked distribution. We choose the most probable
value of the distribution as the representative value of g~~.

For a 10 strip of width M in the z direction, it is
generally the case that

g(( ~ M/Wg, (6)
for $~~ && M. If the wave energy is predominantly con-
fined in individual channels, it is plausibly expected that
if a particular channel has a z direction localization length

g~, then its g~~ should be

(7)
in the limit of s ~~

&& s + . This turns out not to be the case
for the simple reason that the introduction of isotropic
randomness can introduce an interchannel exchange of
the wave energy. This is clearly demonstrated in Fig. 1

for two channels, where the incident wave into channel
"B" is shown to be progressively transferred to channel
"A" (which is in fact spatially far away from channel B)
until, in the tail region, channel B decays at the same
rate as channel A. For channel B there is thus a two-
segment behavior in its spatial decay: The initial decay
involves not only the localizing effect of the isotropic
randomness, but also the transfer of energy to channel A;
whereas in the second segment, the behavior of channel
B is controlled by channel A. If the wave energy were
initially injected into channel A, then only the second
segment of B would be evident. In this example, A is
clearly seen to be the dominant channel. In fact, for each
configuration there is always a dominant channel, which

is also the one whose localization length is the largest
and which therefore defines the localization length for that
particular configuration. To study the behavior of wave
propagation parallel to the layers is thus equivalent to the
study of the dominant channel behavior.

What determines the dominant channel behavior? Here
a search for dependence on $~ [as given by Eq. (6)]
yields no perceivable correlation. More relevant is the
parameter v, = ~6E„/Bk, ~. In Fig. 2 the v„. distribution
of the dominant channel is plotted. A clear trend for
the dominant channel to have a large v, is seen. This
correlation is intnitively plausible because a state with
a larger v should take longer to slow down and be
localized than the one with a smaller v, . However, even
for v, —= 2, the maximum value, the amount of wave
intensity in the dominant channel can still be relatively
small at a given value of x. To study this aspect of the
problem quantitatively, we define the occupation ratio of
a particular channel as

where M, is the number of propagating channels in
the left or right lead attached to the sample, j is the
index for the incident channels, i denotes the output
(measurement) channel, r, ; is the transmission amplitude
between channel j and channel i as calculated by using
the recursive Green's function approach, and ( ), means
averaging along the x positions in the asymptotic regime
where the statistics of 0; is stationary. Apart from
minor fIuctuations, the final answer for the occupation
ratio has been tested to be independent from the initial
injection channel. In Fig. 3 we plot the distribution of
the occupation ratio of the dominant channel for sample
configurations with M = 20 and 50. For M = 20, it is
seen that while there are some cases where the dominant
channel's occupation ratio is in the range of O.S—0.9, the
most probable occupation ratio of the dominant channel is
on the order of 0.2 —0.3, i.e., (70—80)% the wave energy
at a given x is spread to the other channels. As M
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FIG. 1. Spatial decay of two channels along the x direction,
with wave incident on channel B. Note the two-segment
behavior of the B-channel decay. T denotes the amplitude
transmission coefficient. Here M = 10, Wl = 15, W2 = 1.5,
and the result is from a single configuration calculation.
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FIG. 2. The Ij, distribution of the dominant channel in each
configuration. Here M = 40, Wl = 15, W2 = 1.5, and the
result comprises 460 configurations.
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FIG. 3. Distributions of the dominant-channel occupation
ratio for M = 20 and 50. Here Wl = 15, W2 = 1.5, and the
distribution for the M = 20 case has 460 configurations, and
the distribution for the M = 50 case has 90 configurations.

is increased to 50, the most probable occupation ratio
decreases to -0.1, with a corresponding decrease in the
probability for occupation ratio higher than 0.5.

The key to the understanding of this delocalizing be-
havior lies in the evanescent channels. In the example
shown in Fig. 1, while A and B are the only two propa-
gating channels, there are many other evanescent chan-
nels which overlap spatially with A and 8 and with each
other. These channels cannot carry energy in the x direc-
tion, but they provide the means of interchannel energy
transfer in the presence of isotropic randomness. Wave
energy can thus "tunnel" from one channel to the next,
resulting in significant delocalization of the wave energy
in the z direction. As M increases, the total number of
channels increases proportionally, and interchannel tun-

neling is expected to become progressively more efficient
as the average energy spacing between the E.'s decreases,
so that the overlap between the E, levels increases.

Because of the existence of the dominant channel,
the distribution of wave energy between the propagating
(nonevanescent) channels is never ergodic. A clean
demonstration of this fact is via the calculation of the
average number of occupied channels

%„(M,) =

which is recognized to be the inverse of the average
participation ratio. A plot of N„, (M, ) for these different
models is shown in Fig. 4. Data for the case under
consideration are denoted by open circles, whereas cross-
hatched squares and open triangles denote the cases of the
2D isotropic model and the 2D anisotropic hopping model
f6], respectively. In the anisotropic hopping model, ~

.n Eq. (I) contains only the y term, but the hopping
;Tiatrix element s is anisotropic. It is seen that models
9 and C both exhibit linear dependence on the. number
of propagating channels M„as dictated by ergodicity,

FIG. 4. Number of occupied channels plotted as a function of
M, , the number of propagating channels. Whereas the isotropic
model (K) and the anisotropic hopping model (5) exhibit
linear dependence on M,. (both have W~ = 0, W2 = 1.5, with
I configuration; the anisotropic model has r, = 1, t, = 0.1),
the presence of isotropic randomness in a randomly layered
medium (0) results in a QM, . variation. It should be noted that
M, = 20 in the present model means M = SO —100, whereas for
the isotropic model M, . corresponds roughly with M. Therefore
the sizes of the actual calculations in all three models are
comparable. Here WI = 15, W2 = 1.5, and 460 configurations
are used in averaging for M = 10, 15, 20, 25, and 30.
80 configurations are used in averaging for M =—70, 75, and 80„
and 30 configurations are used for M = 85. The rms deviation
of the overall data is about 10%.

whereas model A shows an excellent gM, . dependence.
The same QM, , dependence is also observed for the
most probable value of the @~ distribution. If a "truly
1D" behavior is defined as where the wave energy is
always confined in each channel so that the resulting
dependence on M,, is fiat, then Fig. 4 shows our case
to be intermediate between 1D and 2D. Of course, the
QM, dependence is not expected to be maintained beyond
the limit of I, = the localization length of the isotropic
model with randomness W2. However, for small W2 this

upper bound can be transcendentally large. The precise
origin of the ~M, behavior is under further study. Results
will "be reported in another publication.

The implication of our findings for the time evolution of
a localized pulse is as follows. For a given channel, wave
tunneling is analogous to a scattering extinction effect.
The energy of a localized pulse is therefore expected to
leak out of the channel region defined by $~, with a time
constant determined by the ratio W2/W~. In the limit of
small Wz/W&, the decay is expected to be transcendentally
slow due to the fact that the energy spreading occurs
mostly in the exponential tail region of the intensity
distribution. However, while the intensity in the tail
region is arguably small, the large value of the cutoff for
the QM, . behavior (the isotropic 2D j) can mean that a
significant fraction of the total intensity will eventually
be outside of the initial channel. As an example, for
M, = 50 an estimated (20—50)% of the total intensity lies
outside of the initial channel.
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