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New Instability in Molecular Beam Epitaxy

Christophe Duport,' Philippe Nozigres,? Jacques Villain'
'Département de Recherche Fondamentale sur la Matiére Condensée, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

2Institut Laue-Langevin , 156X, F-38042 Grenoble, France
(Received 23 May 1994)

A new, step bunching instability in the growth of stepped surfaces by molecular beam epitaxy MBE

is described.

It is produced by an elastic mechanism, and is different from the instability discovered

by Asaro and Tiller and by Grinfeld. Unlike the Asaro-Tiller-Grinfeld instability (which is expected to
occur only under very low fluxes), the present instability can occur or not, according to the nature of
the substrate. This instability is likely to be offset by step barrier asymmetry in many materials.

PACS numbers: 68.55.Bd

Semiconducting devices are usually prepared by
molecular beam epitaxy (MBE). The materials which are
grown are crystals limited by a surface (Fig. 1) very close
to a high symmetry orientation (generally 001). The
preferred type of growth is step flow, i.e., all steps have
the same uniform velocity, due to sticking of diffusing
adatoms.

However, instabilities of the step flow motion are fre-
quently observed [1]. A possible cause of instability is
the long range. elastic interaction between the adatoms
and the rest of the material. The best-known elastic insta-
bility is the Grinfeld mechanism [2,3,4], which is briefly
recounted below. The driving force of that instability is
proportional to the square (8a)? of the natural misfit §a
between the lattice constants of the substrate and the ad-
sorbate. We are going to describe here a new, differ-
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FIG. 1. A stepped surface grown by MBE. Because of
elasticity, the freshly landed adatom is attracted to the upper
or to the lower terrace. In the former case, which is illustrated,
the step flow is unstable with respect to step bunching. In
this case da > 0, i.e., adsorbed atoms bigger than substrate
atoms, then the incorporated atoms are expanded on the higher
side of a step and contracted on the lower side. So, if the
quantity m (related to the broken bond mechanism of Fig. 2) is
positive, an adatom is attracted to the right and eventually goes
downstairs. For larger a, the misfit effect of an isolated atom
may become important, and the usual Grinfeld effect results.
The curve shows the energy of an adatom as given by (15).
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ent instability for which the driving force is proportional
to da.

Let the mechanism of elastic interaction be recalled
first for an adatom on a high symmetry surface. One can
distinguish (Fig. 2) the “broken bond mechanism” and
the “misfit mechanism.” The former occurs even if the
adatom is of the same chemical species as the substrate.
It is described by Fig. 2(a) in the case of central, pairwise
interactions between nearest and next-nearest neighbors,
but the effect is general. An isolated adatom is seen to
exert forces fz on the other atoms, the location of which
is designated by R. The total force is zero at equilibrium,
but the dipole moments

May = D o Rafk (1)

FIG. 2. (a) The broken bond mechanism, represented in the
special case of pairwise interactions between nearest and
next-nearest neighbor atoms. The adatom exerts a force
dipole tensor on the rest of the crystal. (b) The misfit
mechanism: smaller adatoms apply a negative stress on the
substrate. (c¢) This mechanism also works through one or
several layers of smaller atoms. For bigger adatoms the stress
would of course be positive.
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are not zero if « = y. If the x and y axes are cho-
sen parallel to the surface, symmetry imposes m,, =
myy = m.

At a long distance r of an atom, the strain induced by
this atom in a given direction is proportional to 1/r3 and
to the dipole moment m. Quadrupolar and higher effects
will be neglected.

The broken bond effect is not additive: For instance,
if many adatoms form a cluster, the resulting strain is not
obtained by attributing the dipole moment of an isolated
atom to each atom of the cluster. Actually, the stress
exerted by a large terrace on the rest of the crystal (in the
absence of misfit) is localized near the ledge (Fig. 3), so
that the elastic effect of a terrace is that of a distribution
of force dipoles along its edge [5].

The other mechanism, or misfit mechanism, results
from the fact that the adatoms would like to have an
interatomic distance different from that of the substrate
[(Fig. 2(b)]. This effect is additive, i.e., proportional to
the size and the thickness of terraces. However, if the
substrate is infinitely deep, the stress exerted by complete
layers does not need to be taken into account, because
they have no effect, since the size of these layers is fixed
by the substrate. The stress per atom is [2,3,4]

Moy = 22 L (b + 8,080y @
where o is the Poisson coefficient, E is Young’s modulus,
and a positive value of da corresponds to adsorbate atoms
bigger than substrate atoms.

In the case of heteroepitaxy, addressed in this Letter,
the misfit mechanism dominates the elastic effect of a
large terrace, at least far from its edge. On the other
hand, for an isolated adatom, the broken bond mechanism
dominates. Thus, the elastic energy of an adatom on
a stepped surface is dominated by the misfit effect of
the terraces and the broken bond effect of the adatom.
The stress associated with both mechanisms may have
the same sign or different signs, according to the sign
of da. As will now be argued, the elastic effect is
destabilizing in the former case and stabilizing in the
latter case, in contrast with the Asaro-Tiller-Grinfeld
(ATG) instability [2,3,4] which takes place for any sign
of a. The argument is the following. If the stress
associated with both mechanisms has the same sign
(Fig. 1) an adatom is attracted to the downward edge
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FIG. 3. Forces applied by an extra half layer on the rest of the
crystal, assuming the latter to the rigid. Pairwise interactions
between nearest and next-nearest neighbor atoms are assumed.
The forces are localized near the terrace edge; their sum is zero,
but their dipole moment is not.

of its terrace, where it does not feel the substrate very
much. From there, it jumps more easily to the lower
terrace. Thus, atoms go preferably to the lower terrace. It
results that broad terraces become broader—an obviously
destabilizing effect. Conversely, if the stress associated
with both mechanisms has the opposite sign and an
adatom is attracted to the upper end of its terrace, a broad
terrace becomes narrower (as in the usual step barrier
asymmetry effect [6,7]) and this is stabilizing.

These qualitative ideas will now be applied in a
quantitative form to step flow growth. Freshly landed
atoms (“adatoms”) diffuse on high symmetry surfaces
(Fig. 1) until they meet a step. Then the incorporation
is irreversible. The crucial point is whether an adatom
goes to the upper or to the lower ledge. This depends
partly on the elastic interaction between this atom and the
steps, and a qualitative discussion may be restricted to the
two steps which bound the terrace where the adatom has
landed. The discussion will be restricted to terrace widths
much broader than the atomic distance. It differs from
the work of Spencer et al. 8] where the atomic nature of
matter is not taken into account.

We will investigate the linear stability of a regular array
of straight, parallel steps. The position x, of the nth step
(labeled as shown by Fig. 1) satisfies

et = (D J@) s (1/2,0) = py]
+ (Drll/a)[pn(ln/zs t) - P: ’ (3)

where I, = x, — x,+1, pn(x,1) is the adatom density on
the nth terrace at time ¢, a is the atomic distance, D/ /a is
the probability per unit time for an adatom near an upward
step to stick to that edge, D/ /a is the same probability
for a downward step, D,p, /a is the probability of
detachment of an atom per unit time from the nth step
to the upper terrace, and D, _p,_,/a is the probability
of detachment of an atom per unit time from the same
step to the lower terrace. The quantities p,f and p,
are close to the equilibrium density of adatoms po on a
flat surface, with a small local correction due to elasticity.
It will be assumed that the beam intensity F is so high
that the adatom density is much larger than p,, which
will be neglected as well as p™ and p~ throughout this
Letter. The middle of each terrace is taken as origin for
this terrace. The step barrier asymmetry [6] is generally
such that D, < D!

The next task is to write the equation of motion for
pn(x,1). It is convenient to introduce the current of
adatoms J,(x,7) and the beam intensity F. Assuming
the time variation of this probability to be very slow in
comparison with adatom motion, a conservation equation
can be written in a stationary form,

9 d
—_— E + = .
Fy! pnl(x, 1) Py Jo(x,t) + F =0 @
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From now on, the time dependence of p and J will be
ignored. Integration of (4) shows that the quantity
A, = J,(x) — Fx (5a)
is independent of x on any terrace n. On the other
hand, the current is related to the density by the Einstein-
Fokker-Planck equation [9]
Ipn pn(x) oU
In(x) D[ dx * kgT 9x :"
where D is the diffusion constant, and U is the energy
of an adatom at point x and depends on the elastic
mechanisms described above. It will be evaluated later.
A boundary condition for x = 1,,/2 is obtained by writing
that the sticking rate is, on one hand, equal to the absolute
value of the current, and, on the other hand, proportional
to the adatom density:
Jn(ln/z) = (D:,/a)pn(ln/z) = A, + Fln/z' (5¢)
Similarly, for x = —1,/2:
Jn(-ln/z) = _(Dylll/a)pn(_ln/2) = An - F1r1/2 (Sd)
The current J, can be eliminated between (5a) and
(5b) and the resulting differential equation in p,(x) can
be integrated. The integration constant and A, can be
deduced from (5¢) and (5d).
Before doing that, we now come back to Eq. (3). It
implies the following equation for large values of [, =
Xn = Xp+1-

(5b)

dl, _ do oy,

d
+ (ln - ln+l)E[D/p(l/2)], (6)
or, according to (5c) and (5d),

al al dA ([ 921
<E)n - ‘F(a) ) E(a‘ﬁ); @

The nearly uniform solution of (7) is [,(¢) = Iy +
€ cos[k(n — Ft)] exp(dA/dl k*t). The condition of stabil-
ity of the step flow regime is therefore dA/dl < 0. Now,
one has to calculate dA/dl from Eqs. (5). Eliminating J,
between (5a) and (5b) and integrating, one obtains
U(=1/2) —U(x)

Pal) = pa(=1/2) exp =

tody Uly) — Ulx)
5w+ e TR @)
where [ = [,. The function A(/) = A,, can be evaluated
by replacing x by 7/2 in (8) and eliminating p(//2) and
p(—1/2) by means of (5c) and (5d). The result is

A+ Fl/2 = —?—/[—A + F1/2] exp U(-1/2) —U(/2)

D’ KgT

D’ f’/z dy U(y) — U(1/2)
= —(Fy + A e

a J-p D (Fy ) exp KgT

&)
It will now be assumed that (i) elastic energies are
much smaller than KzT = 1/8, and (ii) {/a is large with
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respect to D/D’, and therefore with respect to 1. Only
the terms of highest order in / among the terms of order
B, and the terms of the two highest orders in / among
the terms of order O in B, will be retained. Under these
assumptions and after differentiation, formula (9) yields,
to first order in B:

A Fa2<D2 B D2>

dl 220\ D2 pm

d 1 1/2
- BE (7]_[/2 )’U(y)d)’), (10)

where U is assumed to be an odd function in agreement
with formula (11) below.

The final step is the evaluation of the energy U(x).
This has to be done, as explained at the beginning, under
the assumption [5,10—12] that adatoms and steps can be
represented as force dipoles acting on a plane surface.
For straight steps parallel to the y axis, the nonvanishing
elements of the force dipole moment per unit length are
Myx, My, My, and m;.. However, it can be checked
that the interaction of the last two components with
dipole components of the type m,,, m,,, and m,, (the
nonvanishing elements of the force dipole corresponding
to an adatom) is purely local and can therefore be
neglected at long distances. It is therefore sufficient to
associate to a step parallel to the y axis force the dipole
components per unit length m,, and m,, [9]. However,
it can be shown that the interaction of m,, with m,, is
purely local and that the interaction of m,, with a dipole
of type my,, at a distance r decays as 1/r* and is therefore
negligible with respect to the interaction between two
dipoles of type m,,. Summing the various contributions,
taking only nearest steps into account (a qualitatively
correct approximation) and using (2), one obtains for large

(x +11/2 B 1/21— x>’ an

where m is the value of m,, = m,, for an isolated adatom,
o is the Poisson coefficient, and E is Young’s modulus.
In formula (11), only the misfit mechanism of the terraces,
which dominates at long distances, has been taken into
account.

Insertion of (11) into (10) yields

dA Fa?( D? D? 2m 6a BF
— == - |+ 0+ o) — —
dl 212\ D”? D> a I
(12)
As argued above, an instability appears if dA/dl > 0,
or alternatively if the product méa is positive, when [ is
larger than /., with
2 2
ma KT (D D )i. a3
da
For lower values of [, the step barrier asymmetry effect
stabilizes step flow.

T 4dm 1l + o

D2 D2
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If all steps are taken into account, and not only the
nearest ones, the second term of the right-hand side of
(12) is multiplied by 2. Then /. is half the value (13).

We now give a rough evaluation of the parameters
which appear in (16). Assuming D’ = D exp(=T,/T),
the value T, = 2000 K found for W(110) [13] can be
accepted in a typical metal. Then, at a tem?erature of
900 K, the ratio D/D’ is about D/D’ = exp () = 9.2,
and we assume that D/D"” =~ 1. An order of magnitude
of m may be obtained, assuming a pair potential between
nearest and next-nearest neighbors [(Fig. 2(a)]; m is then
found to be about 0.07 times the cohesion energy Wy
A value of da/a of 1% is plausible for coherent growth.
Assuming W, /Kpg = 35 000 K, . is found to be several
thousands of interatomic distances at 900 K. This is
much larger than usual distances between steps. We
conclude that step bunching is generally made impossible
by the step barrier asymmetry. Note that, if there is no
step barrier asymmetry effect and if méa is positive,
the step bunching instability always occurs. It never
occurs if méa is negative, and méa depends, for a given
adsorbate, on the nature of the substrate. The present
effect (instability if mda > 0, stabilization if méa < 0)
dominates the ATG instability, because the driving force
(11) is of order 8a instead of 8a? as in the ATG
instability. This is not true for F = 0 or for weak flux,
when our treatment fails to describe the tendency to
thermal equilibrium and the ATG instability. However, it
is also proportional to F. In weak flux, our treatment fails
because the quantities p* and p~ cannot be neglected in
(3). A more careful treatment (to be published) yields an
additional term in (12), which is independent of F, but
proportional to §a? and negligible if F is not too small.

To conclude, mechanisms which have been ignored in
this Letter will be briefly discussed. Step flow can also
be destabilized by formation of islands between steps. In

that case, the step-adatom interaction by the broken bond
mechanism (neglected above) may be important. If the
flux F is lowered, the adatom density decreases, and this
reduces the island formation rate. However, if F is too
low, the kinetic instability described here is dominated by
the usual ATG instability as pointed out above. A final
remark is the possibility of instability with respect to step
distortion has not been taken into account although it is
known to be important [14].
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