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We consider an excited atom in a cavity such that spontaneous emission is inhibited, and address the
question of whether a sudden replacement of one of the cavity mirrors by a detector can result in a
photon count immediately or only after some retardation time. The feasibility of an experiment of this
type has led to considerable discussion as to its outcome. Following a brief summary of the conflicting
arguments, we show that it is possible to count a photon immediately following the substitution of a

photodetector for a mirror.
PACS numbers: 42.50.—p, 12.20.-m

Recent experiments on two-photon down-conversion [1]
have extended the domain of cavity QED to include nonlin-
ear optical processes and much larger emitter-mirror sepa-
rations than have been possible in experiments with atoms
in cavities [2]. Such experiments also allow the possibil-
ity, through the use of polarization-sensitive mirrors and
fast Pockels cells, of investigating effects associated with
the sudden replacement of a cavity mirror by a detector
[3]. This possibility has stimulated considerable discus-
sion about whether photons, under conditions of cavity-
inhibited emission, can be counted immediately following
the substitution of a photodetector for a mirror or only after
some retardation time relating to the propagation of light
between the emitter and the detector.

The same question can be raised in the context of
ordinary cavity QED involving a single excited atom in a
cavity. Suppose that spontaneous emission is completely
inhibited by the cavity and that at time 7 one of the
mirrors is suddenly replaced by a photodetector. Can
a photon be counted immediately at time 7, or is the
photon count ideally zero until some time 7/ = T + Tk,
where Ty is a retardation time determined by the distance
between the atom and the detector that has replaced the
mirror [4]?

Two plausible explanations, leading to different an-
swers, have been proposed. According to one argument,
the inhibited atom cannot “know” the mirror has been re-
moved until the time t = T + d/c, where d is the atom-
mirror distance, and the atom can begin to radiate only
after this time. Since the propagation time to the detec-
tor is d/c, a photon can be detected only after a time
t +d/c =T + 2d/c, i.e., after a time 2d /¢ following the
mirror switchout.

The second viewpoint holds that, as in the case of a
classical dipole radiator in a cavity, there are always fields
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(or, more precisely, probability amplitudes) propagating
from the atom to the removable mirror and back to the
atom, and that the inhibition of spontaneous emission im-
plies a destructive interference of the two counterpropa-
gating fields. The sudden removal of the mirror allows
that part of the field propagating toward the mirror to es-
cape from the cavity, so that a photon can be counted
immediately following the switchout of the mirror.

In the absence of detailed calculations or an experiment,
objections can be raised against either prediction. The
first argument makes no reference to counterpropagating,
destructively interfering waves or probability amplitudes.
The second argument might appear to violate energy
conservation, since it apparently predicts an immediately
nonvanishing photon counting rate at time 7' while the
atom is held in its excited state, spontaneous emission
being inhibited until the atom can somehow receive the
information that the mirror has been switched out.

We will show that a photon can be counted immediately
following the replacement of a mirror by a detector.
Because the analysis of any specific, real experiment
will involve complications irrelevant to the question of
interest, we consider an idealized model. This model
consists of a two-level atom in the presence of a single
plane mirror, and an electric-dipole atom-field interaction
restricted to singly polarized field modes propagating
only in the two directions normal to the mirror (Fig. 1).
The Heisenberg-picture electric field operator is E(z,t) =
Eo(z,t) + E (z,1), where Ey(z,t) is the free field in the
absence of any sources and

E(z,t) = 2m‘,¢fot dt'[o(t") + ot ()]
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FIG. 1. Two-level atom with z coordinate z, near a plane
infinite mirror at z = L. The field is restricted to modes with
k vectors parallel to the z axis.

is the source field due to the atom. Here o and o'
are the usual two-level lowering and raising operators,
respectively, w is the electric-dipole matrix element
for the two-level atom of transition frequency wg, and
Ui(z) is a mode function normalized in a volume of
cross-sectional area A and length L. In our model
Ui(z) = (2/AL)Y?sink(L — z), so that Ug(L) = 0 at the

(perfectly conducting) mirror. In the limit L — o, >, —
(L/7) [dk = (L/7c) [dw and
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We let z, z9, L — o in such a way that z — zo9, L — z¢, and
L — z remain finite and positive; these limits are those
appropriate for an atom at a distance d = L — zo from a
single mirror. In this limit [5]

E(z,t) = — ZZT_A“[&X(I _z —Czo)
_ ('fx(z = H_—:_—ﬂ)] c>m). O

where o, = ¢ + of. It is important to note that no
approximations have been made in the derivation of this
result from the Hamiltonian for our model.

We now make a rotating-wave approximation, exactly
as in the case of an atom in free space, by taking o (r) =
—iwyo(t) and therefore

C
_ 21«‘—:—29)} =EM@n + EF 1), “4)

where the positive- and negative-frequency parts of the | radiation reaction responsible for spontaneous emission

field are given approximately by [6]
e = 2T 2= )
C

cA
o)) e

and E\ (z,1) = E§+)(z,t)’f. In particular, at the position
z = zop of the atom, we obtain from (5) the radiation
reaction field

2ri 2d
EM(zo,1) = LTI Do [0‘(1‘) _ o(r _ _)}
) cA c
2ipwo 2iwod/e
= —— |] — 0 =
” [ e lo(r)y =0 (6)

for e2@d/c = 1 where d = L — zo is the distance of the
atom from the mirror. In other words, if e2®d/¢ = 1 the

[7]1 vanishes and spontaneous emission is inhibited.

The first term in brackets in Eq. (5) is a retarded field
propagating from zo to z. The second term involves
propagation from zy to the mirror and then to z. These
terms therefore correspond to fields propagating in the
positive and negative z directions, respectively, as can
also be seen from a plane-wave expansion of the field.
The “forward”-propagating field

oo
EC 1) = MU<T _ i) D
cA c

for z = L can be measured instantaneously: the photon
count rate at an ideal broadband photodetector replacing
the mirror at z = L and 7 = T is proportional to the
normally ordered correlation function

|

e ) = (e e L)fr D)= (o olr L)

where P(z) is the probability at time 7 that the atom is in the excited state. There is thus an immediately nonvanishing
photon counting rate at z = L when the detector replaces the mirror at time ¢+ = 7. The rate at which field energy is
lost from the cavity when the mirror is switched out at t = T is

R(T) = %(Eﬁ})(u NES 1)) = &2 (E%)ZP@ - %) = ,BHwoP(T - %) ©)
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Here 8 = mu’wo/kicA is half the spontaneous emission
rate in the “free space” limit d — o in our model [8].
Both (7) and (9) are applicable at any time ¢ > d/c
replacing 7.

The probability that the atom at time ¢ is in the excited
state may be shown to be given by [8]

2nd ) 2
C

9 n 2
P =|> %(r - Z—Zd—) e“ﬁ"‘z”d/”)e(t -
(10)

n=0

for the case ¢%*¢ = 1 of interest here. For times ¢ suf-
ficiently large compared with the “photon bounce time”
2d/c, P(t) reaches a steady-state value; for 28d/c < 1—
the domain of standard cavity QED experiments—this
steady-state value is P, = ¢ 2£4/¢_ Assuming T > 2d/c,
therefore, which must be the case if the mirror is switched
out after a time when spontaneous emission is inhibited
(P >0, P = 0), we have |

A L
E/zg dZ<

T d
f dt'R(t') = — R(T) =
T—d/c 4

Wi (T) = E /G DEFGET)) =

B

,’ia)()P

R(T) = BhwyP;. (11)
This has the following interpretation. The steady-
state inhibition of spontaneous emission, i.e., the fact

that the atom is not losing any net energy to the
field by spontaneous emission, implies that any radiation
emitted toward the mirror is exactly balanced by radiation
reflected back from the mirror, a result consistent with
(6). In particular, the rate at which radiant energy is
transported toward the mirror is half the spontaneous
emission rate, B8P, times fiwo, which is just (11). (The
1/2 is required because we are considering only the
energy in the one-sided region zg < z < L.)

After the mirror is switched out at ¢+ = 7, the atom
cannot begin to lose energy to spontaneous emission until
a time d/c later. The fact that we can nevertheless count
a photon before t = T + d/c might therefore appear
to violate energy conservation. Consider, however, the
(cycle-averaged) energy Wi (T) associated with forward-
propagating radiation in the space zo < z < L at time T':

2 L . T
( ”’“‘"’) [ dz P<T B ZO) - Bﬁwof dr' P(1)
20 c T—d/c

(12)

There is similarly a nonvanishing energy associated with |
backward-propagating radiation, as well as an interference
between forward- and backward-propagating radiation. It
follows that the nonvanishing photon counting rate at

t = T occurs not at the expense of the atom, but rather as

a depletion of field energy, i.e., a depletion of the energy
associated with the backward-propagating field and the
interference of the counterpropagating fields. We now
take up this point in more detail.

2Tipwy

[ - ol -

EM(z,1) =

Our analysis thus far has relied on the intuitive idea
that the Poynting vector associated with the forward-
propagating radiation alone gives the rate of energy
depletion from the cavity when the mirror is suddenly
removed. To better appreciate where the energy comes
from to register a count at the detector, we consider now
the time dependence of the cavity energy after the mirror
is removed. The mirror switchout at r = T will affect the
backward-propagating field in such a way that the field (5)
is replaced by

Z — 20

=)

where now we have explicitly included all appropri- |
ate step functions. The last step function accounts

_ 0(, Y Bk Sk 4 Z“)a(; ) Z")e(r —+ B Z)] (13)
¢ ¢ ¢
d
o Wepri(t) = —BhwoPs, (T <t<T +d/c), (15)

for the fact that backward-propagating waves persist
at point z at times ¢t > T only if L —z>c(t — T),
i.e.,, if the information that the mirror is gone at
t =T has not yet propagated to z. Based on this
expression we calculate, in a manner analogous to
(12), the cavity energy associated with the backward-
propagating waves plus the interference of the forward-
and backward-propagating waves in the region zp <
z < L:

Bhwold — c(t — T)]P; (14)

1
WgBFI = —
c

for T <t <T + d/c. Thus

which is just —R(T) [Eq. (11)], i.e., the rate at which
energy associated with the forward-propagating radia-
tion will escape from the cavity when the mirror is
switched out.

This confirms our assertion that the immediate detec-
tion of a photon, in spite of inhibited spontaneous emis-
sion, occurs at the expense of cavity field energy, or
actually the change in field energy associated with the
backward-propagating radiation and its interference with
forward-propagating radiation when the mirror is switched
out. It is precisely this change, according to (11) and
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(15), that propagates out of the cavity and that can pro-
duce a photon count. We emphasize again that this oc-
curs in spite of the fact that, back at the atom, there
is still destructive interference and inhibited spontaneous
emission, and a constant upper-state probability P,, un-
til time T + d/c. The total field energy has a constant
expectation value up until this time. Afterz =7 + d/c,
of course, the atom radiates as it does ordinarily in free
space. All these results are confirmed by a detailed mi-
croscopic model for a switchable mirror, analogous to the
treatment in Ref. [8], which will be presented elsewhere.

It is perhaps worth noting why, as a consequence of
retardation, there will always be some field energy in the
cavity before the mirror is removed. For a time ¢ = 2d/c
after the atom is excited at ¢ = 0, say, it will radiate
uninhibitedly as if in free space. For times 0 < ¢ < 2d/c,
therefore, the energy in the field is

W) = hwoll — P(0)] = Awoll — e72#1], (16
and the rate at which the field energy grows is
W(t) = 2Blhwge 28", 17)

At time ¢t = d/c, when the radiated field reaches the
mirror,

W(d/c) = 2B hwge 2P4/*, (18)

which, for 2B8d/c < 1, is approximately 28hAwoP;, as
noted earlier. The rate at which the energy of the
forward-propagating radiation grows is half this, i.e.,
R(d/c) = BhwoPs = R(T), as given by Eq. (11). As
the atom quickly attains a steady state for the special
case 2Bd/c < 1 under consideration, the rate at which
energy is put into the forward-propagating field will
quickly equilibrate to the value R(T). It is precisely this
power that can be registered at the detector replacing
the mirror. There is no contradiction with the fact of
inhibited spontaneous emission because, although P = 0,
the steady-state probability P, is always less than unity.

It also seems worth noting that, in the Schrodinger
picture, the atom-field system at time ¢ < T is described
to an excellent approximation by the state vector

| (2)) = a(t)latom excited) [no photons)
+ Z ar(t) |atom in lower state)
3

X |one photon in mode k), (19)
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where P(t) = |a(t)|? is the probability that the atom
is excited at time ¢. In the steady state of inhibited
spontaneous emission, P = P; < 1,1i.e., a,a; < 1 and the
atom-field system is in an “entangled” state reminiscent of
the Schrodinger cat paradigm.
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