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Quantum Monte Carlo Determination of Electronic and Structural Properties of Si„Clusters
(n ~ 20)
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Variational and fixed-node diffusion Monte Carlo methods are applied to study the structural
and valence electronic properties of Si„clusters. Binding energies for n ~ 7 agree within =4%
with experiments and within =2% when the fixed-node error is decreased by using natural orbitals.
For n ~ 9 we show that the local density approximation overbinds by =25%. We determined
unambiguously (i) the role of correlation in the energy ordering for different structures, including our
new lowest energy structure of Si2O, and (ii) a different ground state for Si~3 than the one predicted
by the local density approximation.

PACS numbers: 36.40.—c, 71.45.Nt

The study of atomic clusters has become one of the
most exciting areas of research because of the unique
combination of molecular and condensed matter physics
and the possibility of studying the transition from
molecules to crystalline solids [1]. Recently, covalently
bonded semiconductor clusters (such as C, Si, and Ge)
have been given much attention [2—4] as they have rather
different properties than the bulk materials and form
unique structures which may be useful in generating
new materials with novel and unusual properties [4,5].
In particular, Si„clusters have been studied by both
theoretical and experimental approaches [6—12], and
for small n ground state structures have been identified
[13] and very recently confirmed experimentally [14].
In spite of this effort, the situation is far from clear for
larger clusters; e.g. , a lower energy structure has just
been found [15] for Si9. Except for the small clusters
which were studied by quantum chemistry methods,
most of the electronic structure calculations performed to
date have used either empirical tight-binding models or
local density approximation (LDA) approaches. While
in most cases LDA provides excellent geometries and
also a correct picture of the energy differences between
structures with the same or similar number of atoms, one
can expect a significant overbinding; in addition, it is
not possible to assess the role of correlation energy in
stabilizing a particular structure. This uncertainty in the
correlation effect description has led, for example, to a
controversy concerning the validity of LDA predictions
regarding the stable structure of Si f3 [11,16].

This Letter determines without ambiguity the impact of
correlation on the structural and electronic properties of Si„
clusters using high-accuracy quantum Monte Carlo (QMC)
methods. We find that the valence electron correlation
energy per atom varies significantly from one structure to
another even for larger clusters. We also evaluate the bind-
ing energies, which differ from available experiment by
2% to 5%, a significant improvement over the accuracy of
LDA. For Si20, a new elongated structure is proposed that

where f(R, t) = t/tr(R)P(R, t) and G(R, R', r) is a Green
function which is known in the r ~ 0 limit [21]. We
treated the fermion antisymmetry problem by the com-
monly used fixed-node approximation [21], which re-
stricts the nodes of @(R,t) to be identical with the nodes
of Pz. (R). The trial function used is a linear combination
of Slater determinants of single electron spin-up and spin-
down orbitals times a correlation factor [22,23],

Pz. = g d„Dt Dl exp P u(r;t, r,t, r,,) (2)

we find to be about 4 eV lower in energy than the dodec-
ahedron, and about 2 eV lower than previously proposed
elongated structures [12,17,18]. The ability of the QMC
method to study effects which are very sensitive to an accu-
rate description of correlation is illustrated by calculating
the negative ion for the closed shell Si]3 cluster, for which
we find a different electronic ground state than LDA and
evaluate the electron affinity to be 2.0(1) eV. Finally, we
contribute to the development of the QMC method by ad-
dressing the fixed-node error as a significant source of the
few percent discrepancy between our calculated binding
energies and experiment. We show that the use of natu-
ral orbitals from correlated calculations instead of Hartree-
Fock orbitals produces more accurate wave functions,
decreasing the differences with experiment for the n =
2, 3, 4 cases to 1%—2%. To our knowledge, these QMC
results represent the first ab initio many-body calculations
of valence electronic structure for molecular systems with
a large number of valence electrons.

In our QMC approach [19],we treat the core electrons
with nonlocal pseudopotentials generated within Hartree-
Fock theory [20] and use variational Monte Carlo (VMC)
calculations to optimize the trial function Pr(R), where R
denotes coordinates of the valence electrons. In diffusion
Monte Carlo (DMC) calculations, one simulates stochas-
tically the imaginary time Schrodinger equation,

f(R, t + r) = G(R, R';r) f(R', t) dR',
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where I corresponds to the ionsions, i, g to the electrons,

are b
and r;I, r,I, r;, to the distances. The Slater determe erminants
are uilt from Hartree-Fock (HF) orbitals which are
computed using the GAMESS pack . Pac age. arametrization
and optimization of u~r,d p

' of u(r;l, r,j, r;, ), which represents the
e ectron-electron and electron-elect-e ec ron-ion correlations,
are described elsewhere [24]. With VMC hin t e optimized
Pr(R) gave 85%—90% of the DMC correlation energy for
all sizes of studied clusters.

Since the calculation of forces is not developed for
QMC, searching and optimization of the structures is
performed using LDA, which is well known to give
excellent geometries. All structures are optimized within

c comparisonthe given symmetries in order to have a direct
wit previous calculations. A conjugate gradient as well
as quasi Newton minimization are used a d t, an a om positions
are relaxed until forces become less than 0.003 a.u.

n=2to 7—to 7.—For these smaller clusters, the ground
state structures were first determ d th
Raghavachari and Rohlfing [13] and recently confirmed
experimentally through Raman spectroscopy [14], and
thus provide an excellent test for the ~~MC
Table I

r e ~~approach.
a e ists our results for these cluste rs, as we as11

avai a e experimental data. We are encouraged by the
level of accuracy of the QMC results when compared with
experiment [25] and point out that there is no decrease in
accuracy with increased cluster size for n = 4, 6, 7. By
contrast, LDA overbinding is 15%—20% for these small
clusters, typical of errors found in LDA calculations [26).

n = 9 and 10.—For Si9 the distorted tricapped octahe-
ricappe prism (seedron is compared with a distorted t d

Fig. 1) recently proposed by Ordej6n, Lebedenko, and

prism and the tetracapped octahedron. The total energies
o t ese different geometries for each cluster size differed

y ess than 1 eV in previous calculations [13,15,27], and

(c)

(e)

n=l0

(h)

LDA DMC Expt.

TABLE I. Bindin
HF, LDA and D

'

g energies (eV/atom) calculated b th

FIG. l. Struuctures of calculated clusters for n ~ 9. Th
atom ~C d(,) distorted tricapped octahedron; (b) the 9-atom (D

n . a e9-

distorted tricapped prism; (c) the 10-atom T
e -atom (C3 ) tetracapped trigonal prism;

(e) the 13-atom (Ih) icosahedron; (f) the 13-atom C3, capped
trigonal antiprism; (g) the 20-atom (Ih) dodecahedron; (h) the
20-atom (C3,) new elongated structure.

S12 (D2h)
Si, (C,.)
Si4 (D~h)
Sih (C2, )
»7 (DSh)

Si9 (C,)
S19 (Dh3)
Sicko (Td)
Ss&o (C3„)
S43 (Ih)
Si,3 (C3.)
Si„(C, )

S120 (Ih)
Si2o (Cq. )
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0.85
1.12
1.61
1.82
1.91
1.74
1.77
1.94
1.89
1.41
1.80
1.88
1.61
1.55

1.98
2.92
3.50
4.00
4.14
4.06
4.14
4.25
4.32
3.98
4.28
4.43
4.10
4.28

1.580(7)
2.374(8)
2.86(2)
3.26(1)
3.43(2)
3.28(2)
3.39(2)
3.44(2)
3.48(2)
3.12(2)
3.41(l)
3.56(l)
3.23(3)
3.43(3)

1.61(4)
2.45(6)
3.01(6)
3.42(4)
3.60(4)

it has not been clear which structure was more stable.
Our results confirm the LDA and empirical tight-binding
predictions in both cases showing th d de istorte tricapped
trigonal prism and the tetracapped trigonal prism to be

n = 13.—Thes
lower in energy for Si9 and Si &o, respectivel .

e clusters are of interest because of the

lh) geometry, which, for example, has recently been found
to be a stable geometry for doped Al clusters [28]. How-
ever a lowerower C3 symmetry structure was found by a sim-
ulate annealing LDA search to be energeticall f-ica y more a-

e for Si by about 0.5 eV/atom [11]. This led to
the conjecture [16] that the electron correlation had not
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been treated adequately and that proper calculations would
show the icosahedron to be more stable. We calculated
both structures, and for completeness three different occu-
pations of the highest orbitals of the icosahedron are con-
sidered: Ag singlet, Gg singlet, and G triple. These pos-
sibilities come from the fact that Si~3++ (lh) is a closed-
shell molecule with the first two virtual orbitals (As and

Gs) very near in energy. The two open-shell states of Si~3
with double occupancy of the fourfold degenerate Gg or-
bital are essentially equal in energy, whereas the closed-
shell Ag state is considerably higher, thus confirming the
Jahn-Teller instability of the icosahedron as found in LDA
[11]. We find indeed that the icosahedral structure has a
larger correlation energy. It is not nearly enough, how-
ever, to overcome Coulomb and exchange contributions,
and so the closed-shell C3 structure is substantially lower
in total energy.

n = 20.—In order to compare our results with recent
calculations [12], we first considered the perfect dodeca-
hedron structure even though it is not stable against Jahn-
Teller distortion. We then went further and focused on
a new structure for Sicko which we have recently found
from a determination of a new class of stacked clusters
[18]. Surprisingly, this new structure (shown in Fig. 1)
is found to be significantly lower in total energy than
the ring structure of Kaxiras and Jackson [12], and 4 eV
lower in energy than the dodecahedron. Note that in this
structure every atom except for the caps is fourfold coor-
dinated, an important difference from the previously pro-
posed threefold coordinated ring structures [12]. Our Si2o
(C3 ) cluster can be further relaxed to lower symmetry,
but the gain in total energy is less than 0.2 eV.

From our QMC calculations we can clearly understand
the importance of the different contributions to the total
energy, and it is interesting to observe the impact of
correlation energies in these clusters, shown in Fig. 2.
In particular, for Sii3 the structure with higer correlation
energy is not the most stable, whi1e the opposite is true in
the case of Si20 where the correlation in the C3 structure
is enough to overcome the unfavorable HF energy when
compared with the I~ structure. In fact, the correlation
energy of the Si20 cluster is close to that of the silicon
crystal [29]. From this point of view it is remarkable
that LDA predicts a correct energy ordering for different
competing structures.

The high accuracy of the QMC method and small
statistical errors which we were able to achieve opened
possibilities to study even more subtle effects such as
electron affinity. Thus, we evaluated the electron affinity
for the closed-shell Si » cluster with C3 symmetry
and found a result of 2.0(l) eV in DMC. Although
LDA binds the additional electron self-consistently and
predicted the value of the electron affinity rather well
with no overbinding (see Table I), it could not determine
the correct electronic state of the negative ion cluster.
Our QMC results show that by an energy margin of
0.4(1) eV, the additional electron prefers to go into the

0.16
E0

gj 0.14

O

+

CDI
0.12

C0
6$

LD

o 0.100

/

/

/

/

/0
/

/

/

/

/

/

0.08
0 10 15

Number of atoms

I

20

FIG. 2. The (negative) valence correlation energy as a func-
tion of the number of atoms in the cluster. The dashed line
connects the values which belong to the lowest energy struc-
tures. The triangle, diamond, square, and filled circle represent
values for Si9 (C, ), Si&o (Td), Si~3 (Ih), and Si20 (II, ), respec-
tively. The cross at infinite number of atoms corresponds to
the estimated correlation energy for the silicon crystal.

singly degenerate A orbital as opposed to the doubly
degenerate F. orbital predicted by LDA.

Finally, we investigated the possible origin of the few
percent discrepancy between experimental and DMC re-
sults. There are three possible sources of errors in our
DMC calculations: pseudopotential inaccuracies, fixed-
node error, and approximate treatment of the nonlocal
term in the DMC method. We believe that the main
source is the fixed node, and thus we have tried two
possibilities to improve the fermion nodes of Pr(R).
First, for Siq we carried out VMC and DMC simula-
tions with a sequence of multiconfiguration trial functions
which included up to -20 configurations generated by the
multiconfigurational Hartree-Fock (MCHF) [30] method.
However, there was no significant near-degeneracy effect
and we found practically no gain in energy for both VMC
and DMC when using these trial functions. Second, we
employed a one-configuration trial function but replaced
the Hartree-Fock orbitals by natural orbitals which take
into consideration the correlation effects. The natural or-
bitals diagonalize the one-body density matrix [30] and
were found by MCHF calculations with single and double
excitations into the lowest six virtual orbitals. This trial
function gave low er VMC and DMC energies, and the dif-
ference with experiment decreased by a factor of —2 (see
Table II). In order to further test this technique, we ap-
plied the same procedure to Si3 and Si4, and a similar
improvement in energy was observed. The use of natu-
ral orbitals can be considered as an alternative to the ap-
proach of Umrigar, Nightingale, and Runge [31], where
both the correlation factor and one-body orbitals were op-
timized within the VMC method for Be and Ne atoms.
These results also support the idea of the importance of
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TABLE II. Comparison of binding energies (eV/atom) calcu-
lated using Hartree-Fock (HF) and natural (NO) orbitals for
small clusters.

Si2
Si3
Si4

DMC (HF)

1.580(7)
2.374(8)
2.86(2)

DMC (NO)

1.592(6)
2.423(7)
2.92(2)

Expt.

1.61(4)
2.45(6)
3.01(6)

*On leave from Institute of Physics, Dubravska cesta 9,
84228 Bratislava, Slovakia.
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using one-body orbitals which are optimal in the presence
of correlation [31,32]. Moreover, this raises a new chal-
lenge for QMC, namely the task of efficient optimization
of one-body orbitals for large systems.
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