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Long Atomic Coherence Times in an Optical Dipole Trap
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Sodium atoms have been stored in a blue-detuned dipole trap based on sheets of argon ion laser light
which support against gravity. In this trap, the atoms spend most of their time in free fall, resulting in
a large reduction in the perturbation of the atomic levels due to the trapping potential. This reduction
enabled us to probe the ground state hyperfine splitting with a measurement time of 4 s, yielding a
linewidth of 0.125 Hz and a Ramsey fringe contrast of 43%. The coherence time was -300 times
longer than achieved in a red-detuned Nd: YAG laser dipole trap with comparable depth.

PACS nUmbers, : 32.80.Pj, 06.30.Ft, 32.30.Bv, 42.50.Vk

The ability to laser cool neutral atoms has permitted a
dramatic increase in the time one can measure an atomic
transition in a perturbation free environment. For exam-
ple, the microwave measurement of the 9.2 GHz ground
state hyperfine transition in a cesium atomic fountain has
allowed a measurement time of —1/3 s, corresponding to
FWHM linewidth of —1.5 Hz [1]. Geometrical considera-
tions limit the height of the atomic fountain, and measure-
ment times significantly longer than 1 s are not practical.

Atoms have been confined in optical, magnetic [2],
and magneto-optic traps [3] for as long as several hours,
but all of these traps are based on the perturbation of
the atomic energy levels by externally applied fields.
The traps introduce large inhomogeneous energy shifts
of ground state hyperfine levels that severely limit the
precision of spectroscopic measurement. In order to
minimize this perturbation, one can attempt to design a
trap where the atoms are confined by hard walls and spend
most of their time at zero potential. For example, in a trap
based on a sheet of blue-detuned light supporting against
gravity, the ac Stark shifts are 10 —10 times smaller than
for a comparably deep red-detuned trap, where the atoms
predominantly experience the maximum light intensity.
In addition, if the detuning 6 of the trapping light is much
larger than the hyperfine frequency difference between
ground state levels 6h&, and the beam is linearly polarized,
then the relative Stark shift is suppressed by a factor of
6/Bhf. A large detuning also improves the coherence
time of atoms in the trap as the photon scattering rate
is inversely proportional to 6 . Finally, if the atoms are
confined to a dimension less than the wavelength of the
transition (Lamb-Dicke regime), then Doppler broadening
becomes negligible. The combination of these factors
allows high precision rf spectroscopy of atoms in far-blue-
detuned light trap.

A hard wall with a characteristic length of A/2' may
be constructed using a blue-detuned evanescent light field
[4]. Bouncing of cold atoms from evanescent light waves
has been observed by a number of groups [5,6]. However,
previously demonstrated atomic trampolines could not be
used for precision spectroscopic measurements for two

reasons: The longest 1/e storage times were on the order
of 100 ms [5], and the detuning of the trapping light was
relatively small (typically —10 Hz), resulting in a high
photon scattering rate. Both these limitations arose due
to the fact that the atoms were dropped from a height
of a few mm, necessitating a strong dipole potential to
support them (the minimum drop height is constrained by
the problem of placing a glass surface close to the source
of cold atoms). For example, cesium atoms dropped from
a height of 3 mm gain a kinetic energy of -6000U„„
where U„„=(It,k) /2M is the photon recoil energy. The
intensity required to produce the necessary dipole force
and simultaneously avoid a high photon scattering rate has
prompted a number of groups to study ways of enhancing
the light intensity by dielectric coatings [7] or surface
plasmon resonances [8].

We have attempted to sidestep these difficulties by
constructing a blue-detuned dipole trap based on free-
propagating laser beams. This trap can be placed at the
center of the source of cold atoms such that the atoms do
not gain significant kinetic energy during loading. The
trap was constructed from linearly polarized laser beams
copropagating along the y axis. The beams were focused
to form two elliptical sheets of light (15 p, m X 1100 p, m,
1/e2 diameters) and overlapped with the major axes of
the ellipses at ~45 to the vertical in order to form a
"V"cross section. Figure 1 shows the calculated potential
seen by an atom confined in a horizontal plane 30 p, m
above the intersection of the two beams. Confinement
along the laser propagation direction y is provided by the
divergence of the focused light sheets.

The two cylindrical beams were produced by the 488
and 514.5 nm lines of an argon laser. This geometry
avoids intensity and polarization gradients at the inter-
section. With 15 W (all lines) from an argon laser, the
power of 488 and 514.5 nm lines was 4 and 6 W, respec-
tively, corresponding to a maximum dipole potential of
90U„,and 190U„,. The large detuning of the argon light
from the Na 589 nm D lines (—10'4 Hz) means that the
relative Stark shift between the F = 1, mF = 0 and F =
2, mF = 0 ground states was only 6hf/6 = 2.2 X 10 of
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FIG. 3. The central Ramsey fringes of the F = 1, mF = 0
to F = 2, IF = 0 transition with a 4 s measurement time.
The circles are the measured data, and the line is a fit
by a + b cos(2' fr + @1. A constant background, present
without rf pulses, was subtracted from the data.

20 W argon laser power. Over a few hours, frequency
drifts of several tens of mHz were observed due to the
quadratic Zeeman shift nB2, where tt is —2.2 mHz/mG
for Na.

The Stark shift of the hyperfine transition was deter-
mined by measuring the frequency of the central Ramsey
fringe at T = l s as a function of the trapping laser power
P (the 488 and 514.5 nm lines are -0 25P and —.0 4P, .
respectively). We measure a frequency shift linearly pro-
portional to P with a slope of —18 mHz/W. The Stark
shift at P = 15 W was 270 mHz. Since most of the trap
parameters such as the density, bounce frequencies, and
velocities of the atoms depend on the trapping laser inten-
sity, a simple proportionality is not necessarily expected.

The dominant source of dephasing between the Ramsey
pulses is the broad distribution of Stark shifts experienced
by different atoms. We calculated these shifts and the
coherence time for the atoms in the trap using a Monte
Carlo simulation [14]. The distribution of average Stark
shifts for atoms that remained in the trap after 1 s is
shown in Fig. 4 (dotted line). The hyperfine Stark shift
distribution (upper scale) is obtained by dividing the
frequency scale by 6/6h&. = 4.5 x 10 . The distribution
yields a coherence decay time T,. = 9 s and a frequency
shift of the central Ramsey fringe of 70 mHz [15].
The discrepancy between the calculated and experimental
values may be attributed to aberrations in the trapping
laser beams.

The asymmetric geometry of our present trap permits
wildly different trajectories and hence a broad distribution
of integrated Stark shifts. A longer coherence time
would be observed in a more symmetric trap where there
is a strong temporal averaging of the integrated Stark
shift. As an example, the solid line in Fig. 4 shows
the Stark shift distribution calculated for atoms trapped
in an inverted pyramid, formed by three sheets of light,

5000 10000 15000 20000
Light shift (Hz)

FIG. 4. Stark shift distributions for atoms stored in blue-
detuned dipole traps calculated by a Monte Carlo simulation.
The dotted line corresponds to the two-beam trap used in the
experiment. The solid line is for the proposed three-beam trap
discussed in the text.

propagating at 45' to gravity and 90' to each other [16].
The calculated Stark shift distribution gave a coherence
decay time T, = 35 s, a factor of —4 increase compared
to the two-beam trap. The average Stark shift decreased
by -35%, to 45 mHz. In this trap, the net effect of
many collisions with the walls is to induce an average
phase shift which is approximately the same for all atoms.
Similar averaging is seen with atoms confined at higher
temperatures. For example, hydrogen atoms trapped in
a Tefion coated glass bulb of a hydrogen maser [17]
and atoms confined in a cell with buffer gases [18] can
undergo a large number of collisions before the relevant
atomic coherence is destroyed.

We also performed rf spectroscopy of Na atoms in
a far-off resonance, red-detuned dipole trap that was
realized by focusing a 10 W Nd: YAG laser beam (A =
1.06 p, m) to a 75 p, m 1/e2 diameter spot. The depth of
the dipole potential (—150U„„)was comparable to that
of our blue-detuned trap, and the detuning from the Na
D lines (2.26 x 10' Hz) was -2.5 times larger. Still,
we measured a coherence time of only T, = 15 msec, a
factor of —300 smaller than for the blue-detuned trap.
This result clearly illustrates the advantage of the blue-
detuned geometry.

To reproduce the 4 s Ramsey fringes reported above
would require a 20 m atomic fountain. However, despite
this advance it is not obvious that a far-off resonance
blue-detuned dipole trap can supersede a fountain as an
atomic clock because of the residual ac Stark shifts.
On the other hand, this type of trap may be useful for
measuring a permanent electric dipole moment in atoms
[19]. It combines many of the better features of atomic
beam measurements [20] and cell experiments [18] in that
high electric fields could be used while systematic effects
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such as magnetic-field inhomogeneities over the sample
volume, v X E shifts, and leakage currents due to cell
walls would be suppressed. We are hopeful that over 10
atoms can be trapped with coherence times of over 30 s.
In addition, blue-detuned dipole traps offer great promise
for achieving high atomic phase-space densities as a "Hat
bottomed" potential helps to avoid runaway three-body
recombination [21].
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