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We derive new positivity constraints on the spin-dependent structure functions of the nucleon. These
model-independent results reduce considerably their domain of allowed values, in particular, for the

chiral-odd parton distribution 4, (x).

PACS numbers: 13.88.+¢, 12.39.Ki, 13.60.Hb

Nucleon parton distributions are important physical
quantities which contain crucial information about the
fundamental properties of the nucleon structure. Precise
knowledge of parton distributions is also needed if one
wants to explore hard scattering processes at future hadron
colliders. For many years, spin-independent parton distri-
butions have been accurately measured in a large number
of experiments, in particular, deep inelastic scattering, and
they are now known in a wide kinematic range. The ex-
perimental program going on at HERA (hadron electron
ring accelerator, Hamburg, Germany) will further increase
this kinematic domain with smaller x and larger Q2. The
situation is rather different for spin-dependent parton dis-
tributions whose experimental determination has been im-
proved only recently with new measurements [1] of g (x)
and g{(x), at both CERN and SLAC by means of pro-
ton and neutron polarized deep inelastic scattering. These
polarized structure functions provide us with some insight
into the quark (or antiquark) helicity distributions usually
called Ag(x) [or AG(x)]. But in addition to the spin av-
erage quark distributions g(x) and these helicity distribu-
tions Ag(x), there is a third class of quark distributions
called transversity distributions and denoted h{(x). These
physical quantities which violate chirality [2—4] decouple
from deep inelastic scattering but can be measured in
Drell-Yan processes with both beam and target trans-
versely polarized. So far there is no experimental data

on these distributions h{(x) [or h{(x)], but there are some
attempts to calculate them either in the framework of the
MIT bag model [3] or by means of QCD sum rules [5].

The purpose of this Letter is to use positivity to
derive model-independent constraints on A{ (x), which will
restrict substantially the domain of allowed values [6].
Similar constraints can be obtained for higher-twist parton
distribuions, as we will see below.

Let us consider quark-nucleon elastic scattering g(h) +
N(H) — q(h') + N(H') (h,h' and H,H' are the helicities
of the quark and nucleon, respectively) which is described
in terms of five the s-channel helicity amplitude, denoted
by (W'H'|hH) [7]. In the forward direction, as a conse-
quence of helicity conservation, only three independent
amplitudes are nonvanishing, namely, @i = (++|++),
@3 = (+—|+-), and @3 = (+—|—+), whose imaginary

1292 0031-9007/95/74(8)/1292(3)$06.00

parts are simply related to total cross sections by the opti-
cal theorem.

The forward quark-nucleon amplitude is a 4 X 4 matrix
M in the space where the basis states are |++), |+—),
|-+), and |——). Positivity requires that a*Ma = 0,
where “a” is any 4-component vector in this space. This
implies essentially three conditions [8],

Imejli—o =0, Imesl— =0, (1
and
Img3l—o = Ime3l—o. @)

Now the three quark distributions considered above, g(x),
Agq(x) [denoted f;(x) and g,(x) in Ref. [3]], and h{(x), are
defined by the light-cone Fourier transformation of bilin-
ear quark operators between nucleon states [3]. In fact
these quark distributions are related to the corresponding
u-channel quark-nucleon helicity amplitudes ¢{’s, which
are simply obtained from the ¢;’s by quark line reversal
and we have
g(x) = 3 Im(e} + @3)li-o,
Ag(x) = 3Im(e3 — @})li-o0. 3)
hi(x) = 3 Ime3li= .
Using Eq. (3), the constraints (1) and (2) read in terms
of the parton distributions
gx) =0, g =]Aq(x)I, 4)
and
qg(x) + Aglx) = 2|h;1(x)|. 5)
This result can also be derived in a simple way, which
we will indicate now. Since the quark distributions are
related, via the optical theorem, to the forward quark-
nucleon scattering amplitudes, one can write for the quark
distribution g+ (g-), with helicity parallel (antiparallel) to
that of the nucleon,

5]¢(x) :z<N+IO+|q:,X>(X,q:I0|N+>, (6)
X

where one has to sum over all intermediate states X.
Then clearly one has

h{(x) = DAN_10" g, X)(X,q+|0IN). (D)
< .

© 1995 The American Physical Society



VOLUME 74, NUMBER 8

PHYSICAL REVIEW LETTERS

20 FEBRUARY 1995

Now if one denotes ax = (N+|Olg=+,X), by using parity
conservation, one can write

g+() = 3> (lax P + lax P),
X

(8)
1 . — _*
hi(x) = QZ(a; ay + a;ax ),
X
and, as a consequence of |ay * ax| = 0, one gets imme-
diately

qg+(x) > |hy (), )

which is equivalent to Eq. (5), since g(x) + Ag(x) =
2g+(x).

Whereas the first two constraints (4) are familiar and
quite obvious, the third constraint (5), which is much less
trivial, was ignored so far. We show, in Fig. 1, the region
allowed by Eq. (5) which is half the region obtained by
considering instead

q(x) = |hi{(x)|, (10)

as proposed in Ref. [3].

Clearly the same constraint (5) holds for all quark fla-
vor g = u,d, s, etc. and for their corresponding antiquarks.
Obviously any theoretical model should satisfy these con-
straints. In a toy model [9] where the proton is composed
of a quark and a scalar diquark, one obtains the equality
in Eq. (5) [10]. In the MIT bag model, let us recall that
these distributions read [3]

gx) = f2(x) + g2(x), Aglx) = f2(x) — 1/3g%(x),
hi(x) = f2(x) + 1/3g%(x), (11)

and they also saturate (5). In this case, we observe
that A{(x) = Ag(x), but this situation cannot be very
general because of Eq. (5). As an example, let us assume

hix)

—q(x) ax)  Ag(x)

FIG. 1. The striped area represents the domain allowed by
positivity.

h{(x) = 2Aq(x). Such a relation cannot hold for all x, and
we see that Eq. (5), in particular, if Ag(x) > 0, implies
q(x) = 3Aq(x). This is certainly not satisfied for all
x by the present determination of the u quark helicity
distribution, in particular, for large x, where A7 (x) is large
[1]. The simplifying assumption A} (x) = Ag(x), based on
the nonrelativistic quark model, which has been used in
some recent calculations [11,12] is also not acceptable for
all x values, if Ag(x) < 0 because of Eq. (5). To illustrate
the practical use of Eq. (5), let us take, as an example, the
simple relation

Au(x) = ulx) — d(x) (12)

proposed in Ref. [13] and which is well supported by the
data [1]. It is then possible to obtain the allowed range of
values for h{(x), namely,

u(x) — 3d(x) = |n*(x)|, (13)

which is shown in Fig. 2, where Ref. [13] was used to
evaluate u(x) and d(x). In this case, we see that for x >
0.5, the results of both the MIT bag model [3] and the QCD
sum rule [5] violate our positivity bound, combined with
low Q? data. A similar calculation can be done for the d
quarks and the allowed region for A¢(x) is shown in Fig. 3.

We also want to remark that Eq. (5) can be use to put
a bound on the “tensor charge” 8¢, whose expression in

terms of A7 (x) and A7 (x) is

1 —
[ (1) = h{(0)]dx = 8q. (14)
0
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FIG. 2. The striped area represents the domain allowed for
hi(x), using Eq. (13) and Ref. [13].
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FIG. 3. The striped area represents the domain allowed for

1 (x), using Eq. (5) and Ref. [13].

As noticed in Ref. [3], since it is a difference of quarks
minus antiquarks, sea quarks do not contribute to 8q.
Now by making the reasonable assumption that Eq. (5)
holds for valence quarks separately, one obtains

1
l6g] = | fo [g(®) + Aquu()]dx. (15

For u quarks we get

|ul =1 + %fOlAuval(x)dx, (16)
and for d quarks

|6d| = 5 + g[ol Adyy(x) dx . (17)

By using the results of Ref. [13], one obtains
> and |8d| = 3. (18)

[6ul = 5
These results are consistent with recent estimates of the
tensor charges [14] and, in particular, in the MIT bag
model one finds §u = 1.17 and §d = —0.29.

So far we have only considered the three twist-two
quark (antiquark) distributions, but the above results,
and in particular Eq. (5), are also valid for higher-twist
distributions, which have been identified in Ref. [3]. For
each twist, one has three independent amplitudes which
have the same helicity properties as for twist two. Thus,
up to twist four, one defines nine quark distributions, i.e.,
g(x), Ag(x), and hi(x) for twist two, and, following the
notations of Ref. [3], e(x), gr(x), and A (x) for twist three,
and f4(x), g3(x), and h3(x) for twist four.
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So it is clear that we have the following constraints for
the twist-three distributions:

e(x) + hr(x) = 2|gr(x)|, (19)
and for the twist-four distributions
falx) + g3(x) = 2|hs(0)], (20)

where we have used the notations of Ref. [3]. There
are theoretical calculations based on the MIT bag model
[3,15] for the twist-three distributions and we hope they
satisfy the constraint (19).

None of the above generalized distributions, which are
associated to quark-gluon dynamics, have been measured
so far. As discussed in Ref. [3], the most natural place
to learn about them is probably unpolarized and polarized
Drell-Yan and semi-inclusive processes. We hope exten-
sive studies both theoretical and experimental will be un-
dertaken in the future, where full use will be made of our
new significant constraints (5), (19), and (20).
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