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Leading-Log Effects in the Resonance Electroweak Form Factors
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We study log corrections to inelastic scattering at high Bjorken x for Q2 from 1 to 21 GeV2. At issue
is the presence of log corrections, which can be absent if high-x scattering has damped gluon radiation.
We find logarithmic correction of the scaling curve extrapolated to low Q2 improves the duality
between it and the resonance plus background data in the 6 region, indicating log corrections exist
in the data. However, at W ) 2 GeV and high x, the data show a (1 —x)' form. Log corrections in
one situation but not in another can be reconciled by a W or Q-2-dependent higher twist correction.

PACS numbers: 13.60.Hb, 12.38.8x, 14.2O.Gk

In this Letter, we investigate possible logarithmic
corrections to the inelastic structure function vW2 at high
Bjorken x. As a vehicle we use the Bloom-Gilman (BG)
duality, which is a relationship [1—3] between resonance
physics and the physics of the deep inelastic region.
Bloom and Gilman [1] observed that the ratio of the
area underneath a resonance bump in inelastic electron
scattering to that of the continuum beneath the bump was
generally constant with increasing Q2 and that the smooth
scaling curve seen at high Q was an accurate average
over the resonance bumps seen at lower Q2, but the same
Bjorken x. The first of these observations appears to be
untrue [4] for the A(1232), although for other resonances
it is well confirmed out to high momentum transfer. The
second observation appears to be true in general. In
particular, for the A(1232), the background seems to rise
[4], as the resonance falls, so that the average is constant
relative to the scaling curve. Theoretically, one can
understand in a perturbative QCD context [2,3] that the
Q~ falloff of the resonance and scaling curve evaluated at
the x value pertinent to the resonance are the same, at least
as far as the powers of Q are concerned. The dependence
on logarithms of Q2 has not yet been considered in this
context.

In this Letter, we first investigate the logarithmic
corrections to the resonance-continuum (or BG) duality
discussed above. We compare the resonance data [5,6] to
the scaling curve, for Q2 from 1 to 21 GeV2. We correct
the scaling curve using the Altarelli-Parisi evolution
equation [7]. We find that the corrections are sizable
and that they improve the duality between the resonance
data and the scaling curve.

We proceed by calculating the logarithmic corrections
to the predicted resonance form factors using common
baryon distribution amplitudes [8]. The logarithmic cor-
rections that ensue do not track those of the scaling
curve. We should not necessarily conclude that the BG
duality is violated by the logarithmic corrections, having
found otherwise from the data. Rather, this suggests a
need for better models of the baryon distribution ampli-

dq(x, t) n, (t)
dt 2' dy dz 8 (x —yz) q( y, t)P„„(z). (1)

Here, t = ln(Q2/A2), n, (t) = 4'/P]t, P~ = 11

(2/3)nf (where nf is the number of fermion llavors), and
q(x, t) is a quark distribution function of a given flavor.

tudes, or possibly that some other effect is mimicking
the log Q behavior.

An issue is whether the logarithmic corrections to the
quark distributions coming from the Altarelli-Parisi equa-
tion are actually present in the x l region relevant to
low W (hadronic c.m. energy). Brodsky, Huang, and Lep-
age [9] have argued that the gluon radiation that yields the
splitting function and the resultant logarithmic corrections
are absent in this region. The criterion for the absence
of the gluon radiation is that (1 —x)Q ( p, , where p,
is some scale on the order of 1 GeV2 but is not precisely
known. We also note that (1 —x)Q = x(W~ —m~) =
(W —mz) (for x ~ 1), so that the presence of log cor-
rections in the resonance region is an open question until
p, is determined.

The measured values of vW2 [5] at high x (above 0.7)
and for W above the resonance region (W ) 2 GeV)
have a (1 —x)3 form. No logarithmic corrections appear
to be needed. This is consistent with the prediction of
Brodsky, Huang, and Lepage [9], but inconsistent with
our observations in the 5 region. However, the apparent
absence of a logarithmic correction at high W and its
importance in the resonance region can be reconciled by a
W-dependent higher twist correction.

Logs in the continuum for x 1.—We wish to see
what effect logarithmic corrections have on the parton
distribution functions, hence on the continuum scaling
function. Since the resonance region draws closer to x =
1 with increasing Q, we shall limit our considerations for
the continuum also to x 1, and then shall be able to
quote some results in analytic form.

We start with the Altarelli-Parisi equation having unsup-
pressed gluon radiation,
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The gluon term is omitted, as
ln 1 X.

The splitting function is

1 +
Pqq(z) = CF

(I

its contribution is subleading

+ —6(I —z) .,
z)~ 2

(2)

where CF is 4/3, and (1 —z)+ is defined by

f(z) '

d
f(z)

I —z)+ I —z 0
(3)

TABLE I. Numerical values for the corrorrection to (1 —x)"
for the A(1232) excitation kinematics. The fuThe function T 0) is
defined in the text. We used A = 150 MeV.

Q2 (GeV2) ( I x)4cr T(Q)/Pi

W ant to examine the evolution of a form likee wan
x, to) = No(i —x)", where b is a constant, anand tq(x, ro =

(I
—x

rk ~ Hence we use thecorresponds to some benchmar
ansatz

q(x, t) = N(x, t)(I —x) 4
in the Altarelli-Parisi equation. Systematically throwing
away terms of higher order in I —x, we get

ib 4+C (lFlnnQ~)/Pi (&)q(x, r = No 1 —xj
where

lnln Q —= ln —= T(Q) ( )
/ Ing'/A' &

( lng()/A' j
To see t e size oh of the logarithmic correction, we examine
the values of x corresponding to the peak o t e
resonance region,

2 2
1 my pl~—=1+
x

T bl I we show the size of the correction factor to the
h h- continuum in the 5 region using Q o e as
a benchmark. The logs are important for the resonancnce
excitation even t ough h the correction to the exponent is
fairly mild. For example, the (1 —x)3 we use for F2
at 2 of 4 GeV~ is modified by radiative corrections to

I —x' ' at ~ = 20 GeV However, the value
of 1 —x is very small for the 5 at the latter Q ea ing
a change in F2 by a factor (0.029)0'6 = 0.57.

We close this section with two observations. One
concerns a paramarametrization of the quark distribution by
Morfin and Tung [10]. It is of the form

~ Cn+C( T(g)+C T(Q)2 (g)q(x, t) ~ 1 —x) '

for x 1. Here the coefficient CI is just what is
calculated to eb 4C /P . For their DIS-scheme fits, we

note they get C& = 0.53 —0.54, whereas

4CF = 0.59, (9)0.64,
PI

for the three or four flavors, respective y.el . Our second
remark concerns the comparisonn of F = v W2 data in the
resonance region o et th continuum scaling curve. his is
shown in ig. , wiF . 1 th and without the log correction. n

el eeach case, the ratio R = I/5 is plotted versus Q . ere
we have defined

d4 F2(F Q'),

'(6, Q'),

~(E, N"N ) (lng ) ~' ~, (12)G+(Q') = g+ ~J i j

1.6—
OOOO

0
1.2 -0------0

0.8—
c8

Q
0.4—

0
OO

0
0.0

I

5.0
I

10 15

Q (GeV )

20 25

where g is the Nachtmann variable (x correcte 412
is a bite coveringfor the target mass effects), and hs4 is a i e

, ere 6 . Although thethe chosen resonance region ere,
error bars are arge a ig1 t high Q one observes that the
l th ic corrections improve the constancy of the ratioogari mic c

hi h ~2. Hence the inclusion of the logari
effects helps to make the duality idea, the ow-Q
structure function for a given W should average to the
scaling curve, appear to work better.

Logg~ effects on the resonance to continuum ratio
The resonance contribution to t

~ ~

e inelastic structure
function is

g 2 2 N 8/
(W — )2+ I /4

a simple Breit-Wigner form, and dropping theassuming a sim
G . The formsubleading helicity form factors G0 and G . e

factor is
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0.950
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FIG. 1. The effect of logarithmic correct pctions u on the duality
u in the text. The heavy circles with uncertaintyratio R, define in t e tex.

calin curve;bars in j.cate wid R th log corrections made for the sca ing
the open circles in ica e wd t here central values lie when no g

are made (percentage uncertainties are the same).corrections are ma e
The ratios with corrections lie more c ose y on a
as predicted by perturbative QCD, drawn here with arbitrary
ordinate.
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where Np and N& are coefficients from the distribution
amplitudes of the proton and resonance, respectively. The
latter is, for example, given by

4~(x, Q') = xixzx3 gN, &0;(x)(lnQ') ~'. (l3)
l

The 4' are Appel polynomials, and the anomalous dimen-
sions y' are known and positive. We take the form of the
continuum for x 1 as

Fz (x, Q ) = const X (1 —x) + ' . (14)
We compare the resonance and continuum contribution to
the ratio of integrals R = I;/S;. First,

8

for b = 3. The other integral is

Ax,

X g(E; N, N ) (lnQ )
IJ

(16)
where we have recalled n, —I/ InQ2.

It is clear that I; and 5; have the same power law
falloff [for F2 scaling —(1 —x)3 for x ~ 1]. The lnQ2
dependences can be approximately the same only under
special circumstances and a limited range of Q2. Let
us consider only a small range of InQz [—= In(Qz/Az)/
ln(Qo/A )] and expand around lnQ2 = lnQo, so that
lnQ = 1 + e. Then equating the O(1) and O(e) terms
of the expansion leads to the relation

g;) (E;JN; W~)(2+ y; + yj)

Since C~/2 is about 1/4 and the y; are positive,
only exceptional choices of the amplitudes N; and/or
N, can fulfill the above equation. We know of no
practical cases that satisfy Eq. (17). For instance, it is
not fulfilled for the cases [8) of the Chernyak-Zhitnitsky
or the King-Sachrajda wave function for the proton,
and analogous wave functions for the St~(1535) or the
A(1232). It happens that every significant E;,N; N,

" is
positive, violating Eq. (17). Thus, in general, the BG
duality in the form of the constancy of the resonance peak
to scaling curve ratio must be logarithmically violated
at high Qz. The resonance will fall faster than the
background. The main reason for this is the [n, (Q )]
factor in the exclusive state form factor, absent for the
inclusive process. This quantity falls by a factor of nearly
2 [1.85 for AQco 200 MeV], as Q changes from 4 to
21 GeV2. That Q3G+(Q2) is nearly constant in this range
of Q is interesting and not understood at this level.

The phenomenological parton distribution functions. —
For our purposes, we need the parton distribution func-
tions for x 1. However, the existing parametrizations
[10,13] are fit to data at lower x, and thus are not designed

to be outside specified ranges of x. For example, both
Morfin and Tung [10] and Botts et al. (the CTEQ Collab-
oration) [11]state their fits to be valid for x ( 0.75; sim-
ilar restrictions apply to other parametrizations. Hence,
some diffidence is required in extrapolating these func-
tions toward x = 1, and one should not be surprised by
disagreements among various parametrizations, and be-
tween any of them and the data, as x ~ 1.

Figure 2 shows some high-x, nonresonance region data
[5]. The parametrizations of Morfin and Tung [10] and
CTEQ [11]are also shown. They fall too rapidly in this
region and are below the data by a factor of roughly 2 at
the highest x data point. The naive, uncorrected (1 —x)~
curve matches the data better. We should note that the
logarithmic corrections will not give as dramatic an effect
here as in the resonance region. For the example of the
points in Fig. 2, where Qz is about 20 GeV, a radiative
correction factor of (1 —x)o'6 falls from 0.83 to 0.74 as
we go from the left-hand data point to the right-hand data
point. That is a change of barely over 10%, although
including it worsens the agreement with the data.

Here we recall the Brodsky, Huang, and Lepage [9]
argument that the logarithms are healed (absent) for kine-
matics where (1 —x)Q2 is small. The high-x nonreso-
nance region data does favor the Brodsky, Huang, and
Lepage suggestion. However, we already have seen the
importance of the QCD radiative corrections in the A re-
gion. The two seemingly disparate observations could be
reconciled by allowing a W-dependent higher twist cor-
rection, so that we have in the high-x region

F ~ (I x)3+4cFr(0)/Pi m~)
W2)

where C2 = 1.7 gives the dashed curve in Fig. 2.

(18)

F2(x)
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FIG. 2. Measured F2 = vW2 [5] at high x above the reso-
nance region (W ) 2 GeV), represented by triangles. The solid
line is (I —x)', the tight dashed line is the parametrization DIS
of Morfin and Tung [10], the dash-triple-dotted line (close to
the Morfin-Tung line) is from the CTEQIL distribution [ll],
and the loose dashed line (close to the solid line) is a result in-
cluding both logarithmic corrections and a W-dependent higher
twist correction, as described in the text. Values of Q range
from 16 to 19 GeV~ for the data in this figure, and the values
of W range from 2.8 to 2.0 GeV. Uncertainties in the data are
about ~10%, or about the size of the triangles.
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In conclusion, we have studied here the leading log
QCD radiative corrections at high Q2 in and near the
resonance region. The region of the b, (1232) resonance, in
which the resonance bump falls faster than the underlying
background, is of special interest. We have found the
logarithmic corrections to be important for Q ) 4 GeV2.
The agreement between the Fq data in the resonance
region, smoothed over the resonance width, and the
scaling curve is much improved by the log corrections.
This indicates that the gluonic radiative corrections are
important even in the resonance region.

We have also considered the effect of the logarithmic
corrections to the baryon form factors directly. In general,
these effects are dependent on the specific baryon wave
functions. Log corrections to form factors, for commonly
used baryon distribution amplitudes [8], disagree with
those to the scaling curve. Accepting the common distri-
bution amplitudes means that the resonance-background
duality is violated logarithmically, contradicting the ob-
servations summarized in Fig. 1 ~ This suggests the need
for better model baryon distribution amplitudes.

The measured F2 = v W2 at high x and W ~ 2 GeV is
nicely fit by a plain (I —x)3 form. This agrees with the
expectation of Brodsky, Huang, and Lepage [9], although
(I —x)Qz = 3 GeV for this region, which is large for
the absence of gluonic radiation. The apparent absence
of a log correction here is also surprising in the light of
its apparent presence in the resonance region, but these
can be reconciled by a higher twist correction of the form
1 + const X m/W .

One could entertain an alternative explanation of our
observations: Log corrections coming from gluonic radia-
tion are absent everywhere in the high-x regions we have
studied, and a Q2-dependent higher twist correction gives
the effect we have observed for the 5 region. In either
case, higher twist corrections are indicated, with different
kinematic dependence.

Our conclusions invite more precise and complete ex-
perimental tests. In particular, the hypothesis on evolu-
tion healing [9] can be tested against the full leading log
corrected structure function, ameliorated by higher twist
corrections discussed here, by measuring that structure
function over a range of high x at fixed values of W [14]
in one instance and at fixed Qz in another.
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