
VOLUME 74, NUMBER 8 PH YS ICAL REVIEW LETTERS 20 FEBRUARY 1995

Class of Stationary Axisymmetric Solutions of the Einstein-Maxwell-Dilaton-Axion
Field Equations
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A wide class of solutions, endowed with stationary and axial symmetries, of the Einstein-Maxwell-
dilaton-axion equations are explicitly given. The chosen coordinate system is such that the structural
functions are expressible as a ratio of polynomials of, at most, second degree. It is equipped with
six continuous free parameters and two discrete constants. In particular, it contains the generalized
Sen black hole with mass, Newman-Unti-Tamburino parameter, charge, angular momentum, dilaton and
axion limiting parameters, and related magnetic, dilaton, and axion charges.
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The low-energy effective theory for the heterotic string
theory arises as a dimensional reduction and truncations of
the string theory in four dimensions under the following
considerations (following Sen [1]):compactification of six
of the ten dimensions of the string theory and omission
of the arising massless fields in the obtained heterotic
structure, in this latter, only U(1) charges are permitted;
moreover, in the truncated action there are allowed terms
containing two or fewer derivatives. Not entering into
details and intermediate stages, the dynamical equations
of the resulting theory can be deduced from the action [2]

dx Q
—g [R —2g""d„PB„P

g 8 KB K —e F FP, V p, v

—Ir F„,F~'],
where R is the scalar Riemann curvature, g~, is the
metric four-dimensional tensor, F„ is the electromag-
netic antisymmetric tensor field, F~„ its dual (F„, =
—

2 Q
—g E„„pF P), @ is the dilaton scalar field, and

K is the axion field dual to the three-index antisym-
metric tensor field H = —exp(4$) + de/4. The solu-
tion of the string sigma model is related to the one of
the classical Einstein theory through the metric relation
G~, (s) = e2~g~„(E), where s and F stand, respectively,
for string and Einstein.

Because of the complexity of the Einstein-Maxwell-
dilaton-axion (EMDA) field equations resulting from the
effective action (1), their integration is not a trivial task.
Most of the relevant known solutions have been derived
by transformations [3—5).

The main objective of this Letter is to give the explicit
expression of a wide class of stationary axisymmetric
solutions. It contains eleven parameters restricted to three
algebraic conditions; thus only eight of them can be
considered as free parameters. Moreover, two of the
remaining eight free parameters can be scaled to assume
independently the discrete values —1, 0, 1. Thus, in
general, the obtained EMDA solutions are endowed with
six continuous and two discrete parameters. It contains,

+ —dy — (dr + M der),
v 2

X= —ex +2@x+ n, Y=ay +2py+ cv,

e = —1, 0, 1,
M = vx + 2bx, v = —1, 0, 1,

N= —vy +2Py, A=M —N, (2)
where p, p„, b, and p are constants constrained to
certain conditions given below. The electromagnetic field
F,~ = A„, —A, ~ is determined by the electromagnetic
4-vector potential

A&=6 A, +A 6, p, =xy, 7, cr,

A, = (qy —gx)/5, q = const,

A = vyx(qx + gy)/b,
The dilaton scalar field @ is given by

W (x +y)
exp(2@) = =—cu

g = const. (3)

co = const ~ 0,

as a particular case, the generalized Sen solution which
is equipped with mass, angular momentum, electric and
magnetic charges, dilaton and axion asymptotic constants,
and Newman-Unti-Tamburino (NUT) parameter.

This class of solutions has been derived by a straight-
forward integration process of the EMDA equations for a
metric, a canonical one, endowed with stationary and axi-
symmetric Killing vectors, which has been successfully
used previously to derive all aligned electrovacuum type
D fields [6], and their generalizations in the presence of
a perfect fiuid [7). The fundamental structural functions
are rational functions expressible as the ratio of polynomi-
als of, at most, second degree in the coordinate variables.
Details of the followed integration procedure will be pub-
lished elsewhere.

The metric, endowed with the Killing directions 6, and

, can be given as

ds = —dx + —(dr + N do. )
X 2

X
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while the axion field potential occurs to be

by+PxK=Kp+2
W

Kp = COnSt .

I 1

m" ~2
x

X
dx ~ i (dr + Ndo). ,

Y

The Weyl coefficients occur to be

dy ~ (dr + M do.)
Y

The parameters appearing in this EMDA class of solutions
ought to fulfill the following conditions C,

C: gP —qb =0, pP —pb =0,
v q = 2coP(p, v + Pe), v g = 2cub(pv + eb), (6)

which are written in a symmetric form for further
convenience.

Notice that for simultaneously vanishing parameters b
and P, b = 0 = P, the metric and the electromagnetic
field reduce to the Carter [A] type D solution, see
Ref. [6]; in this case the dilaton and axion fields become
constants, and they can be brought to the values P = 0
and K = 0 by assigning to co and Kp the values cu = 1

and Ko = 0. Thus, for EMDA solutions P or either b
ought to be different from zero.

The main branches of EMDA solutions, described by
the formulas (2)—(6), will be denoted hy

S(b, P 4 0, e, v, p, n, co, Ko', p = p b/P, g = qb/P,

vq = 2cuP(pv + Pe))
and

S(b 4 O, P, e, v, p, n, cu, vo , p, = pP/b', q = gP/b,

vg = 2cub(pv + be)).
Of course, these branches coincide when both parameters
b and p are simultaneously different from zero; they
describe different families of solutions when in the first
branch b = 0, and in the second one P = 0.

All these EMDA solutions are algebraically general
Petrov-type gravitational field. With respect to the null
tetrad [in Kramer-Stephani-MacCallum-Herlt (KSMH)
formulation [8]]

These quantities are given in a symmetric manner. De-
pending on the case, here one has to replace p = p, b/p
or ~ = pP/b.

It is clear that for p or either b different from the Weyl
coefficients, P~ and P3 do not vanish except for XY be-
coming zero. In general, the complex curvature coeffi-
cient r/r2 is different from zero for the studied EMDA field,
thus the invariants C(2) = 6(Pq) —8P~ Pq and C(3)/6 =
—(p2)3 are different from zero, and consequently the cor-
responding gravitational field is algebraically general.

Notice that essential singularities arise for the set of
points, in which the above quoted invariants tend to
infinity, i.e., when 5 vanishes, for

v(x + y ) + 2(bx —Py) = 0.

A particularly relevant EMDA solution is given by the
metric (2) subjected to the coordinate transformations

x = a cosO —mb/P,

7 =t —ay, o = cp/a, (]2)

and the parameters chosen as follows:

S(b, P WOe=1, v= 1, p, = —m,

n =a —m b /P, cu, vo,

p = mb/P, g = qb—/P, q = 2cuP(P —m)).

(13)

In this way we arrive at the EMDA solution given by the
metric

fo = P4 = o,
2A f~ = —2b Pi = i JXY(b + P ),
6A'P2 = 6v(pv + eb) [(x' —3y2)x + i(y —3x )y]

+ 6v(p, v + Pe) [(y —3x ) y
—i(x —3y )x]

+ 2[2e(b' + P') + 3v(bp + P p)] (x' —y')
—12i[(eb + pv) b + (vp, + eP) P]xy
+ 4(pp, + bp)(xb + py) + 4n(b + p ).

(10)

X —a2sin 0
s = — dt2 + gdg2 + —dr

d b 2

+ a sin t9[r —2pr + a ] —X acosO + —(p —m) —a —ba25

dt dp
aA

2

a cosO + —(P —m) —a —b + a sin 8[r —2Pr + a ]

X = r —2mr + a —m b /P
2

5 = r —2pr —b + acosO + —(p —m) (14)
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the electromagnetic 4-vector potential A„, Sen solution

A =0=AY, 1
A, = —[qr —g(a cos8 —mb/P)], 2M = m(1 + coshn),

J2 Q = m sinha, v 2 p, = ma sinhn; (22)

21 = ma(1 + coshn),

W
exp(2$) = r +a cos0

1
(—qr[a sin 8 + 2mab cos8/P —m b /P ]Aa

+g(r + a ) (a cos8 —mb/P)),

the dilaton field

see (16) and (17) of Ref. [1].
It is apparent from (14) that the parameter b is

related to the NUT parameter N = p + b = —b(m-
p)/p, where p = —mb/p from (13). Extending the
applicability of the asymptotic values at r ~ of the
metric components and fields to the metric structure (14)—
(17) with nonvanishing b, b 4 0, one arrives at

m, b
(2a cosO —mb/P), (16) J=aM, Qe~" .= q,

Pe~' .-= g, p, = qa, 2Dp = 2P = —Q /M,

J . 1
g, —2—sinO+ 0tp r2 (18)

From the limiting values of the 4-vector components
of the electromagnetic field one determines the electric
Q and magnetic P charges, and the magnetic dipole
moment p,

Q P 1
A, + acosO+ 0

r r r 2

The asymptotic values of the dilaton and axion fields give
rise to their values at infinity Pp and Kp correspondingly,
and to the dilaton Dp and axion Ap charges according to
the expansions

e@~e@0 1+2 +0Dp 1

r f 2

and the axion scalar field K,

br + P(a cos9 —mb/P)
K = Kp+ 2

W

The asymptotic values of the metric components at
infinity (r ~ ~) for b = 0 (see Ref. [9]) allow one
to determine the black hole mass M and the angular
momentum J,

M
gyt 1 2

2Ap=2b =P /N, cu = exp(2tbp),

Kp = Kp, PM+NQ =0. (23)

Thus, the metric structure can be considered as equipped
with six free parameters

M, a, Q, P(orN), @p, andKp. , (24)

here we have taken into account the constraint PM +
NQ = 0 on P and N for independent M and Q param-
eters. For b different from zero the metric structure (14)
shares the same troubles exhibited by the NUT gravita-
tional field in the presence, if any, of an electromagnetic
field, i.e., this solution cannot be interpreted properly as a
black hole.

One may consider the metric structure (14) as a
generalized Sen solution for the EMDA field equations
in the string gravity. This structure contains many of the
previously known solutions, among them, the Taub-NUT
solution [10,11] as a limiting transition of (14) for a ~ 0.

Results concerned with the most general canonical
metric structure (2)—(6), in which, in particular, there are
solutions for vanishing discrete parameters e or v, will be
published elsewhere. Moreover, a work concerned with
the behavior of the solutions near the black hole is in
progress.

This work has been supported in part by CONACYT
Grant No. 1676-E9209. D. G. and O. K. thank the Physics
Department of CINVESTAV-IPN for hospitality.

2 -2 1
Kp+ —Ape '+ 0

Thus, in the limit r ~ ~, for the studied metric structure
(14)—(17) with b = 0, one establishes that

Q =q = 2coP(P =m),
1 = a(m —p),

P=g, p, =qa,
cp = exp(2$p), Kp = Kp, Dp = P (21)

By setting in these expressions p = —m sinh (n/2) and
~ = 1 one arrives at the parameters characterizing the

*On leave of absence from Lomonosov Moscow State
University.
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