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Separation of Variables and Hamiltonian Formulation for the Ernst Equation
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It is shown that the vacuum Einstein equations for an arbitrary stationary axisymmetric space-time can
be completely separated by reformulating the Ernst equation and its associated linear system in terms
of a nonautonomous Schlesinger-type dynamical system. The conformal factor of the metric coincides
(up to some explicitly computable factor) with the r function of the Ernst equation in the presence of
finitely many regular singularities. %'e also present a canonical formulation of these results, which is
based on a "two-time" Hamiltonian approach, and which opens new avenues for the quantization of
such systems.

PACS numbers: 04.20.Cv, 04.60.Ds

In this Letter we demonstrate that the vacuum Einstein
equations for space-time with two commuting Killing vec-
tors can be reformulated in terms of a pair of compatible
ordinary matrix differential equations. Similar results can
be shown to hold for the more general equations obtained
by dimensional reduction from higher-dimensional theo-
ries of gravity and supergravity with matter couplings to
two dimensions. As a by-product, we establish a previ-
ously unknown relation between the conformal factor of
the associated metric and the so-called ~ function, which
plays a pivotal role in the modern formulation of inte-
grable systems [1,2]. Thirdly, we present a canonical
formulation of these results, which avoids certain techni-
cal difficulties encountered in previous treatments. Our
results suggest that an exact quantization of axisym-
metric stationary (matter-coupled) gravity by exploiting
techniques developed for flat space (quantum) integrable
systems [3,4] is now within reach.

The Frnst equation and related linear system. —%'e
start from the following metric on stationary axisymmetric
space-time [5]:

ds =f '[e (dx + dp ) + p dP ] —f(dt + F dP)
(I)

where (x, p) are Weyl canonical coordinates; t and @
are the time and angular coordinates, respectively. The
functions f(x, p), F(x, p), and k(x, p) are related to the
complex Ernst potential X(x, p) by

1 2
i(X E)

i ('E —X)
2SX

Equation (2) for k(s, g) may be equivalently written in
the form

d lnh = q, (5)

«(g&g ') d6 + «(gi-g ')'dF (6)

is closed, i.e., dq = 0. Equation (3) is the compatibility
condition of the following linear system [6,7]:

d IJ

dg
= U%,

dW

de

where

1-y 1-y
and W(y, g, g) is a 2 x 2 matrix, from which the Ernst
potential and thus the metric (1) can be reconstructed.
The function y(g, se) is a "variable spectral parameter"
subject to the following (compatible) first order equations:

1+y
g —s 1 —y'

y 1 —y
s —

C I+ y
(9)

where h =—e2" is the conformal factor. Using (3) one can
show that the one-form q defined by

f = Re'E, (& —&)g
(E + E)''

(2)

They are solved by

y(g, se, w) = s+6
(w —0)(w —b.,

where s = x + i p, g = x —i p; hereafter subscripts
denote partial derivatives with respect to these

variables. In terms of the potential X(g, g), Einstein's
equations for the metric (1) in particular imply the Ernst
equation [5]

[(6 —
Aging ']g + [(6 —s)gag 'li = 0, (3)

with the symmetric matrix

with ~ E: C a constant of integration, which can be
regarded as the "hidden" constant spectral parameter. For
the linear system (7), we can use either y or w; when y is
expressed as a function of w according to (10), the linear
system (7) lives on the two-sheeted Riemann surface of
the function Q(w —se) (w —g). Both the constant and
the variable spectral parameters w and y are needed for a
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proper understanding of the (infinite-dimensional) hidden
symmetries of (7) [8,9]. Furthermore,

d 0 y 1+y+
dg B$ $ —$1 —y By'

d 8 y 1 y t9+dj B$ g —$1+yBy
The poles of (7) in the complex y plane are thus produced
by differentiation of y according to (9).

Choosing (y, $, $) as independent variables, we get the
following relations from (7) and (9) [10]:

2

2
g&g

' = (12)

where the subscript y denotes differentiation with respect
to y.

Deformation equations. —Although we shall keep in

mind the Ernst equation and its associated linear system
(7) as our principal example, the results described below
hold for arbitrary GL(n, C)-valued matrices g(g, $), as
well as for the gravitationally coupled nonlinear o- models
obtained by dimensional reduction of Maxwell-Einstein
theories in higher dimensions. For our analysis, we shall
use the general framework of monodromy preserving
deformations of ordinary differential equations [1].

Let us now consider the behavior of (O%'/dg)'Il ' and
(O'IJ/dg)W ' in the complex y plane. Singularities in y
arise at those points where W(y) is either nonholomorphic
or degenerate (i.e., detW = 0). Analyticity away from
the points y = ~1 implies that all singular points y, (for
j = 1, . . . , N) of the function W(y, s, g) are regular in the
sense that [1]

+(y) = G, (g, g)+i(y, g, s) (y —yi) 1 Ci as y —yj .

(13)

For y —y~, Wi(y, g, g) = 1 + O(y —yj) is holomor-
phic and invertible. The matrices C, and T, are constant
and invertible, and constant diagonal, respectively, while
the (g, g)-dependent matrices G, are assumed to be invert-
ible. The singular points y, depend on ($, g) according to
(9), i.e. , we have y, = y(w, , $, s) with constants w, ~ C
[11]. The set (yt,r, Ct,r, TJ) for j = 1, . . . , N is generally re-
ferred to as the set of monodromy data of W(y). The
function 0'(y) is uniquely defined by its monodromy data

up to normalization [1].
The logarithmic derivative 'P~W is thus holomorphic

except at the points y = y,- where it has simple poles with
residues

A, ($, $) = G~T&G (14)
by (13). The functions A, ($, $) will play a central role
in the sequel. In general the number N of regular sin-
gularities y, may be infinite (explicit examples are the
x-periodic static axisymmetric solutions found in [12])or

even continuous (this would correspond to nonconstant
conjugation matrices in the related Riemann-Hilbert prob-
lem). However, in this paper we will restrict attention to
finite N. Besides that, we find it convenient to impose
the normalization condition 'P~W '~~= = 0, which may
be ensured, for instance, by demanding qj'~~= = o.i. A
large class of solutions with finitely many singularities is
provided by the multisoliton solutions of Einstein's equa-
tions in [7] (corresponding to matrices TJ, all of whose
eigenvalues are half-integer) and the finite-gap (algebro-
geometric) solutions constructed in [13].

Combining (13) and (14) we arrive at the following
differential equation in y.

(15)

Inserting (15) into (12), we immediately obtain

2 ~ Aj
g t'g

2 ~ A,
gag

(in the sequel summation is taken everywhere from 1

to N). Substituting (16) into (7), we get the following
compatibility conditions between (7) and (15) [14]:

BAi 2 ~ [Ag, Ai]

e —r „., (1 —
y )(1 —y, )'

AI„Aj
. (1 + yk)(1 + y )

(16)

(j = 1, . . . , N).
(17)

It is now straightforward to check that this system is
always compatible if the functions y, obey (9). The first
main result of this Letter is the following.

Theorem 1: Let (w, H C; j = 1, . . . , N) be an arbi
trary set of complex constants and A, = A, (g, g) an asso-
ciated set of solutions of (17). Then the system of linear
equations (16) is always compatible, and the matrix func
tion g = g(g, g) obtained by integrating (16) solves (3).

The proof may be obtained by direct calculation.
It is quite remarkable that the dependence of the Ernst

equation and its associated linear system on the variables

$ and g can be completely decoupled by Theorem 1. In
other words, the problem of solving Einstein's equations
in this reduction has been reduced to integrating two or-
dinary matrix differential equations, which are automati-
cally compatible, unlike to original linear system (7). All
information about the degrees of freedom is thereby en-
coded into the "initial values, " i.e., the set of (constant)
matrices AI

—= A, (g ~, g +); these are also the appro-
priate phase space variables, as we will see below. Ac-
cordingly, we will regard the functions A, (g, g) rather
than W(y, g, g) as the fundamental quantities from now
on, and relate the system (17) directly to the (complexi-
fied) Ernst equation (3).
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Clearly, the matrix functions Aj transform as Aj ~ Aj =
AA, II ' under (19). The transformed matrices A, then
obey the same linear system (18) with the pair (U, V)
replaced by (U, V).

Theorem 1 establishes a direct correspondence between
GL(2, C)-valued solutions of (3) and solutions of (17).
However, it does not specify the conditions that must be
imposed on (w», A, ) in order to satisfy certain restrictions
which the metric g may be subject to. It is easy to
see that the condition detg = 1 is guaranteed by trAj =
0; reality of g requires the existence of an involution
(complex conjugation) on the set [w, , A, ). Conditions
that ensure g = gT are more difficult to formulate and
will be discussed elsewhere.

Conformal factor and r function. To each solution

iA, j of (17) we can associate the following closed one-
form [1]:

qo($, g) = g tr(A»Ak)din(y» —
y», ), (21)

jWk

where the exterior derivative d is to be taken with
respect to the deformation parameters (g, g). The closure
condition dqp = 0 may be directly verified by use of
(17) and (9). Following the general prescription given
in [1],we define the r function associated with the Ernst
equation by

din~ = qp. (22)

We will now show that this 7. function has a very
definite physical meaning in our context: Up to an explicit
factor, it is just the conformal factor h —= e2" [15]. To
establish this result, we first substitute (16) into (6); then
using (9) and (21) we obtain

trA'.' (1 —r, )'
+ g tr(A, Ak)d In($ —g).

q=qp+

j&k

dg
(1+ r)'

(23)

Now, from (17) it follows that g, A, is ($, g) inde-
pendent. Furthermore, it is easy to check that trAj and
trA» are independent of g and g, hence constant, for all

j. Therefore, the eigenvalues of A, are (g, g) independent

Equations (17) may also be represented in "Lax
form, " viz. ,

BAj BAj' = [U~,=, , A, ], ' = [V~,=, , A, ],
where the matrices U and V are defined in (8) and (16).
This form of (17) is "gauge covariant" with respect to the
transformation

W = B(g, g)W. (19)

Namely, the transformed function W satisfies the linear
system d lf/dg = U'll', d'I»/dg = VW, where

U = A, A-'+ QUA-', v = 0;0-'+ AvA-'.
(20)

where C E C is a constant ofintegration.
Notice once more that quantities tr(g» A, ) and trA,

are ($, $) independent. If the related matrix g is real
and symmetric, then P, A, = 0, and the first factor on
the r.h. s. of (24) drops out. We emphasize that our
result is more general than previous ones (the explicit
computability of h for multisoliton solutions has been
known for a long time [7]), and valid for arbitrary
nonlinear a- models coupled to gravity.

Hamiltonian formulation. The system (17) is a "two-
time" Hamiltonian system with respect to the standard
Lie-Poisson bracket [3,16]

(A(y) A(p, )) = [r(p, —y), A(y) e 1 + 1 e A(p)],

(25)
where A(y) = 'If~'I»' ' and the classical rational R matrix
r(y) is equal to II/y with II the permutation operator in
C2 X C2. The dynamics in the P and $ directions are
governed by the Hamiltonians

1 tr(A, A&)

, (1 —r ) (1 —r )
'

1 tr(A»Ap)
H2 =—2k' = — g . (26)

Hi =2k' =

Compatibility of the system (17) implies (H~, H2) = 0,
i.e. , the fiows with respect to the two "time variables" g
and g commute (as can also be verified by explicit com-
putation). Note that our formulation is far simpler both
technically and conceptually than previous Hamiltonian
treatments of such systems, which were based on the use
of "one-time" Hamiltonians, and where the Lie-Poisson
brackets (25) would, in addition, depend on the space co-
ordinates. The notorious problems caused by derivatives
of 6 functions (so-called "nonultralocal" terms) in the
relevant Poisson brackets are altogether avoided here.
Furthermore, the cumbersome structure of the canoni-
cal current algebra in the conventional approach is re-
placed by a more transparent algebraic structure in our
framework.

To be sure, we should regard (26) as constraints
a la Dirac rather than conventional Hamiltonians, because
(3) is derived from a generally covariant theory. To do
this properly would, however, require that we undo the

for any solution of (17) that agrees with (14). As a con-
sequence, the expression P, ~& tr(A, Ak) is likewise ($, g)
independent, and all extra terms on the right-hand side
(r.h. s.) of (23) may be explicitly integrated.

Using (9) and (10), we thus arrive at the following.
Theorem 2: The conformal factor h (5) and the

function (22) are related by
2

h(F, 4, w, ) = &(F —4)
(1/2) tr A,

'

r(g, g, w, ), (24)

1274



VOLUME 74, NUMBER 8 PH YSICAL REVIEW LETTERS 20 FEBRUARY 1995

choice of Weyl coordinates, on which (1) and (3) are
based, and to treat $ and $ as canonical variables sub-
ject to (2k~, $) = (2k'-, $) = 1 and (2k~, $) = (2k~, $) =
0. The quantities 4i ———2k' —Hi and 42 =—2k' —H2
are thereby converted into (mutually commuting) con-
straint operators on an enlarged phase space (they are, in

fact, just the Virasoro constraints). The "time evolutions"
of the spectral parameter y are also generated canoni-
cally in the sense that yt- = (sxil, y) and y~ = [sIi2, y) (so
"time" must eventually be quantized in this scheme).

We close with the following final remarks:
(1) An obvious advantage of using the variables A,

in comparison with the ones employed traditionally in
this context is that they generate a closed Lie algebra
with respect to the standard Lie-Poisson bracket (25).
Secondly, the common features of our system (17) with
the classical limit of the Knizhnik-Zamolodchikov (KZ)
equations [16,17] suggest that one should quantize (17)
in analogy with the KZ equations (although quantum
gravity will certainly introduce new features). We have
only discussed the case of finite N in this paper, but
there are in principle no obstacles to considering N = ~
from the outset, since the space of finite N solutions
can be naturally embedded in this larger space. For
illustrative purposes, it is quite useful to think of the
set of finite N solutions as the "N-particle sector" of
the theory because, depending on the reality conditions,
the solutions g corresponding to (15) possess exactly
N or N/2 singularities wi, . . . , wtv in the upper $ half
plane. In fact, a proper treatment of the Ernst equation
as a (generally covariant) quantum field theory will
presumably require taking into account N as a "particle
number operator. "

(2) The extension of our results to the case of a
Lorentzian world sheet and to arbitrary G/H coset space
o models coupled to gravity in two space-time dimen-
sions is straightforward. In the notation of [9], where this
case is reviewed in some detail, the linear system ma-

trix 9" corresponds to Vzl(V) ', where zl denotes the
Cartan involution [e.g. , zi( V) = (V ) ' for G = SL(n)];
furthermore, the spectral parameter t used there corre-
sponds to i times the parameter y employed in the present
paper. For arbitrary coset spaces, the matrices A, belong
to the Lie algebra of G; like g, they may be subject to
further restrictions.

(3) Analogs of the static axisymmetric (multi-
Schwarzschild) solutions for arbitrary tr models can
be easily constructed in our formalism by choosing the
matrices A, in the Cartan subalgebra of the relevant Lie
algebra. From (17) it is then immediately evident that

A, = const.
(4) Obviously our formulation will yield a new realiza-

tion of the Geroch group [18] and its generalizations; we
here just note that this group mixes sectors belonging to
different "particle numbers. " It is known that the corre-

sponding Kac-Moody algebras act on the conformal factor
via their central extension [8,9,19]; combining this result
with our Theorem 2 should shed some light on the group
theoretical meaning of the ~ function.
A detailed account of the results described in this Letter is
in preparation.
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