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Breakdown of Hydrodynamics in a One-Dimensional System of Inelastic Particles
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We study dynamics of nearly elastic particles constrained to move on a line with energy input from
the boundaries. We find that for typical initial conditions, the system evolves to an "extraordinary" state
with particles separated to two groups: The majority of the particles get clamped into a small region of
space and move with very slow velocities; a few remaining particles travel between the boundaries at
much higher speeds. Such a state clearly violates equipartition of energy. The simplest hydrodynamic
approach fails to give a correct description of the system.

PACS numbers: 05.20.Dd, 47.50.+d, 81.35.+k

In the study of a many-particle system with interactions,
a hydrodynamic approach is naturally used when the
quantity of interest is of a macroscopic nature with length
and time scale much larger than the typical microscopic
scales. Instead of focusing on the detailed dynamics of
individual particles, one usually writes down a set of
equations that describe the evolution of some macroscopic
quantities such as local density, temperature, and flow
velocity, with transport coefficients derived from statistical
considerations [1]. The derivation of the hydrodynamic
equations [2] relies on the assumptions that the particles
reach local equilibrium with equipartition of energy, and
the statistical properties can be simply described by local
macroscopic quantities, i.e., the temperature. However,
as we shall demonstrate that, with the introduction of
a very small dissipation in the microscopic dynamics,
a many-particle system can reach "extraordinary" states
where local equilibrium is destroyed. As this happens, the
hydrodynamic approach fails to give a correct picture for
the system.

The specific example we shall show in this Letter is a
one-dimensional many-particle system in which particles
interact via inelastic collisions which conserve momentum
but dissipate kinetic energy. Such a model was originally
motivated by the studies of granular materials [3—7].
Consider a horizontal column of N sizeless inelastic par-
ticles with identical mass confined by two walls of infinite
masses L = 1 apart. When two particles collide, the
velocities after collision, v& and vz, are expressed in terms
of the velocities before collision, vl and v2, as

v', = evi + (1 —e)v2,

v2 = (1 —e)vi + e.v2

Here e = (1 —r)/2, with r the coefficient of restitution
defined by vi —v2 = r(vi —v2). If r = 1,—the colli-
sion is perfectly elastic, and if r = 0, the collision is com-
pletely sticky. If there is no energy input, all the particles
will come to rest after the initial kinetic energy is dissi-
pated through collisions. To see nontrivial dynamics, one
has to drive the system. We choose to drive the system by
pumping energy from the left side wall. The rule is as fol-
lows. When the leftmost particle hits the left wall, it will

be returned with a random velocity vo of a Gaussian distri-
bution, —exp( —vo/2To). The collision between the right-
most particle and right wall is perfectly elastic, resulting
in no energy change. The above boundary conditions
therefore mimic a left wall held at constant temperature and
a right wall thermally insulated in a thermodynamic sense.

In a conventional hydrodynamic approach, one de-
scribes the system by a set of macroscopic quantities:
particle number density p(x, t) —= (P; 6(x —x;(t))), mac-
roscopic liow velocity u(x, t) —= (P, v;(t) 6[x;(t) —x]),
and temperature T(x, t) —= (g;[v;(t) —u(x, t)] B(x;(t)—
x)), where the ( ) represents a coarse-grained average
over a small region of space or time. Assuming local
equilibrium, one can derive the following set of equations
based on mass, momentum, and energy balances [8,9]:

a, p = —a, (pu),

pa, u = —pua, u —6, (CipT), (2)

p B,T = puB, T ——Ci pTdxu + ct, (C2T I ) —C3ep T I,
with Cl, C2, and C3 numerical constants. The above
equations were derived in the context of granular sand
flow. They are similar to the Navier-Stokes equation for an
ideal gas except that inelastic collisions between particles
lead to an additional energy dissipation term C3e p T ~ in
the energy balance equation.

What do the hydrodynamic equations tell us about
our system? Given the boundary conditions T(0, t) =
To, BT/Bx(l, t) = 0, and pu = 0 at x = 0, 1 (no mass
Ilow through the walls), the above equations predict that,
regardless of the initial condition, the final state is a steady
state with no macroscopic flow. This steady state can
be solved analytically. The solution is smooth and stable
(see Fig. 1 for a typical solution). We note that as e 0
with N fixed, T(x) and p(x) become uniform.

We now contrast the prediction of the hydrodynamic
equations with our numerical simulation. We simu-
late this system by using an event-driven code which
searches out where and when the next collision happens
[5,6, 10,11]. The configuration is updated after each col-
lision. We use a number of particles N and a coefficient
of restitution r such that N(1 —r) ( 1, while N is large.
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FIG. 1. Density (p = p/N) and temperature (T) profiles from
the steady state solution of the hydrodynamic equations. Here
N = 100, e = 0.005, and C2/C3 = 11.8.

Such a restriction is necessary since it is known [5,12]
that, for sufficiently large N(1 —r), one encounters a sin-
gularity where a group of particles become so sticky that
they collide with each other infinitely often in a finite
amount of time.

We start the simulation by generating an arbitrary ini-
tial configuration. Figure 2 shows the result of a typical
simulation. At the beginning the particles are uniformly
distributed. Only the leftmost particle has a nonzero ve-
locity. Soon all the particles except the leftmost one move
toward the right wall. This motion continues until all the
N —1 particles are squeezed at the right wall and get
"clamped" into a small region. The size of the clamped
cluster is very small compared to the dimension of the box,
and the particles in the cluster move with a very small ve-
locity. The leftmost particle travels at a relatively much
faster speed, v —~To = 1, between the left wall and the
cluster, delivering the energy it gained from the collision
with the left wall to the cluster. The collisions between the
fast particle and the cluster also provide the necessary pres-
sure to keep the cluster clamped. When the leftmost par-
ticle obtains from the left side wall a velocity far less than
its typical velocity, ~Tp = 1, the cluster then may have
time to burst out [Fig. 2(d)], and after a transient time, the
N —1 particles will again get clamped at the right wall
[Fig. 2(e)]. Figure 3 shows the motion of the center of
mass. In this case, the typical size of the cluster is —10 3

and the typical velocity of the particles in the cluster is
—10 3. Notice that there are frequent bursts of the clus-
ter when the velocity of the incident particle is very small
(due to the random Gaussian distribution). These bursts
are then brought back to the clamped states after tens of
collisions with the fast particle, indicating that the N —1

particles tend to stick to the right wall. We have checked
various initial conditions to make sure that the realization
of this final state is independent of the initial condition.
For example, we tried an initial condition with particles
having randomly chosen velocity between ~Tp and ~Tz

Energy in from this wall Elastic wall

FIG. 2. Snapshots of a ten-particle system. Here e = 0.05
and To = 1. (a) Snapshots of particles at a transient time. (b),
(c) The "extraordinary state" where nine particles are squeezed
into a small space an one particle runs fast between these
nine particles and the left side walls. (d) A bursting cluster.
(e) The burst is brought back to the clamped state. Note that
in order to make particles visible, we assume each particle is
a sphere of radius r = 0.01, thus the plotted particles center
at x' = x + (2i —1)r, where i is the particle index counting
from the left to the right, i.e., the leftmost particle has an index
l = 1.

We observe that the particles collide with each other and
the initial kinetic energy gets dissipated after a transient pe-
riod so that eventually the system ends up to the same final
state as described above. We have simulated systems with
various N and e (with N e ( 1), the above picture does not
change. We should emphasize that the formation of the
clump does not disappear as e 0, contrary to the predic-
tion of the hydrodynamic equations. In fact, with fixed N
and decreasing e, the particles in the clump get squeezed
into a smaller space and move with slower speeds.

Note that if we replace the inelastic particles by perfectly
elastic ones, the situation is completely different. The
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FIG. 3. Position of center of mass versus time for N = 100,
e = 0.005, and To = 1.
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collision between two particles simply causes them to
exchange their velocities. After a while, the initial velocity
of any particle will be given to the leftmost one and get
randomalized by the collision with the wall. Thus, the
system will eventually reach a state where the particles
distribute themselves uniformly in space, with velocities
assuming the same Gaussian distribution as vp. Therefore,
the inelasticity plays an important role in destroying the
local equilibrium.

The above inelastic result is independent of how the
energy is pumped in at the boundary. For example, similar
phenomenon occur when the left wall is rapidly oscillating
with a small amplitude or when the wall simply kicks
the leftmost particle back with a constant velocity. (In
the latter case, we note that the number of fast particles
between the left wall and the "clump" depends on the initial
condition. ) We also simulated a case where both side walls
kick back the incoming particle with a constant velocity.
In this case, almost all particles are squeezed to form a
cluster and move slowly between the two side walls with
two groups of fast particles running between the cluster
and two side walls.

The case where the left wall kicks the particle back with
constant velocity vo = 1 and initially N —1 rightmost
particles are at rest is quite illustrative, since the final state
is periodic and detailed dynamics can be well understood.
In this case, N —1 particles are squeezed into a very small
cluster, colliding with the fast particle and the wall as if
they were just one big particle. Figure 4 plots the center
of mass motion of the cluster as a function of time. We
see that initially the center of mass accelerates toward
the right wall until the cluster hits the wall with a large
velocity and bounces back. After several collisions with
the right wall and the leftmost particle, the cluster begins a
periodic motion. In one period, the cluster first moves with
a constant velocity V;„ towards the wall ~ After colliding
with the wall, it comes back with a constant velocity V,„,.
This velocity is changed back to V;„after the collision with
the fast particle. This process repeats with the period equal
to the traveling time of the fast particle.

The above state can be understood analytically by
using the following simple picture. Consider N —1 par-
ticles initially placed close to the wall with zero velocity,
label them in order as particle 1, 2, . . . , N —1 with particle
1 closest to the wall. Let particle N incident in from left
with unit velocity. Since the collision is nearly elastic,
after first collision between particle N and N —1, particle
N —1 acquires a large velocity 1 —e, and particle N
nearly comes to rest with a small velocity e. Then the next
collision will be between particle N —1 and N —2, so
on so forth, until particle 2 collides with particle 1, giving
particle 1 a velocity (1 —e) '. This velocity is reversed
after the elastic collision of particle 1 with the wall, and
the collisions propagate back to particle N and knock it
out with a velocity (1 —e) ( '1. This completes the
collision of fast particle with the cluster, giving the clus-
ter a center of mass velocity, Vd = [1 + (1 —e) (
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FIG. 4. Position of center of mass versus time for N = 100,
e = 0.005. The left side wall kicks the incident particle with
a velocity vo = 1. (a) The transient period. The inset is
a blowup showing that after the transient, the c.m. moves
periodica11y forever. (b) The periodic motion of the center of
mass for one period. In (b) we also plot the positions of the
first (closest to the right wall) and (N —1)th particles to show
that the clump synchronously undergoes periodic size changes.
The plotted solid lines in (b) simply connect data. From (b),
we obtain V;„= 1.11 X 10 ' and V,„, = 4.08 X 10 ".

2(1 —e) ']/(N —1) = [1 —exp( —Ne)] /(N —1), in the
limit N » 1 and e » 1. Therefore, the cluster acquires
a small drifting velocity Vd towards the wall. For a small
Ne, Vd —Ne .

To figure out how the center of mass velocity of the
drifting cluster is changed due to collisions with the wall,
consider simply that the N —1 particles move with some
velocity V;„ towards the wall. First, particle 1 reverses
its velocity by a collision with the wall, then particle 1

collides with 2. The collision propagates until particle
N —2 collides with N —1, so that N —1 gets a velocity
away from the wall. The same sequence of collision
repeats itself, starting with a collision between particle
1 and the wall. After N —1 such collision wave, the
velocities of all the N —1 particles change direction, and
the whole cluster moves away from the wall with a center
of mass velocity V,„, = n V;„, where n is a constant
which depends on N and e. For Ne « 1, o. = 1—
2(N —2)e. There are another N —1 waves of collisions
between the particles (not with the wall) which rearrange
the velocities (but do not affect V„„,). We find after
the rearrangement the velocity differences between the
consecutive particles are constant, AV/V;„—2(N —3)e
to lowest order, leading to a uniformly expanding column.
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We now use the above collision pictures to calculate
several quantities in the final state. Since V;„= Vd —V „,
and nV;„= V,„„we obtain V;„= Vd/(I + n) and V„, =
nVd/(1 + n). The width of the cluster l can be roughly
estimated by the distance the center of mass moves away
from the wall, giving I = nVd/(I + n)2, assuming the
traveling period of the fast particle is 1. For a small Ne,
I —Ne2, and V;„= V,„, —Ne . This analysis shows that
with N fixed and e 0, the clamped state become even
singular. For N = 100 and e = 0.005, we find n = 0.34,

V;„= 1.17 && 10 and V,„, = 3.97 ~ 10,which agrees
quite well with the simulation. Numerically, we also find
that the cluster is uniformly expanding while it is moving
away from the wall.

The above scalings can also be understood via a Boltz-
mann equation for one-dimensional inelastic collisions
[13]. Let f(v, x, t) be the phase-space distribution density
function such that f(v, x, t)dxd v is the number of particles
located between x and x + dx with velocities between v
and v + dv. Then the Boltzmann equation for this sys-
tem is

—+ v —f(v, x, t) =-
Bt Bx

du dU dViu —vlf(v, x, t)f(u, x, t)h'(V —v + e(v —u))6 (U —u + e(u —v))

+ du dU dViU —V if(V, x, t)f(U, x, t)6(v —V + e(V —U))6(u —U + e(U —V)), (3)

where the two terms on the right hand side are the usual scattering out and scattering into beam terms of the Boltzmann
equation. For small e, the equation can be simplified as

—+v —f(vxt)=e
Bx Bv

du (v —u)f(v, x, t)f(u, x, t)iv —ui.

When N ~ and e 0 with N e fixed, the N —1 par-
ticles clumped into a small region of space -Ne~ and
moved at a typical velocity -Ne2. We then have that

f —N/(Ne ) The two. left hand side terms are —1/Ne4,
which are balanced by the right hand side term which is
-Ne/(Ne ) Note th.at this approach implies that in the
limit e 0 with Ne = const the system converges to a
well-defined distribution function.

We now give a rough estimate of the transient time.
For a system with no energy input, it takes certain amount
of time to dissipate its initial energy, call such a time rd.
Consider also a system driven by the boundary energy
input, with an initial condition that all the particles are
uniformly distributed with negligible velocity. Call ~, the
time it takes to squeeze the particles to the end. We
assume that the transient time is the larger of 7-d and

v-, can be estimated using the drift velocity the cluster
acquired after each collision with the fast particle. This
leads to Jo' t dt Vd —I, which yields 7, —Q2/Vd. For a
system where particles have random initial velocities Vo

and uniform density n, a simple energy balance leads to
rd —I/enVt, where Vt is the typical velocity of clamped
particles. For N = 100 and e = 0.005, we find ~, —36,
which roughly agrees with the simulation that starts with
particles having zero initial velocities.

A similar phenomenon has been previously reported in
the cooling of inelastic particles [12—14]. In that case, a
clump forms as particles gradually lose their kinetic en-
ergy. Here we have seen that, driven by boundary energy
sources, a one-dimensional system of many inelastic par-
ticles may as well collapse into an extraordinary state
where particles move with velocities of totally different
magnitudes (i.e., no equipartition of energy) and therefore
hydrodynamics fails to give a correct description. It re-

mains to be seen whether such a behavior persists in a
driven system in higher dimensions.
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