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Optimal Extraction of Information from Finite Quantum Ensembles
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Given only a finite ensemble of identically prepared particles, how precisely can one determine their
states'? We describe optimal measurement procedures in the case of spin 1/2 particles. Furthermore, we
prove that optimal measurement procedures must necessarily view the ensemble as a single composite
system rather than as the sum of its components, i.e., optimal measurements cannot be realized by
separate measurements on each particle.
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A basic assumption of quantum mechanics is that if an
infinite ensemble of identically prepared particles is given
the quantum state of the particles can be determined ex-
actly. But in practice one never encounters such infinite
ensembles, and very often they are not even large (statis-
tical). Given such a finite ensemble its state can only be
determined approximately. How much knowledge can be
obtained from such finite ensembles? How quickly does
one approach exact knowledge as the system becomes
large? What experimental strategies furnish the maximum
knowledge? We solve these problems in some particular
cases. This is not of academic interest only. The solu-
tion to such problems is expected to lead to applications
in the fields of quantum information transmission, quan-
tum cryptography, and quantum computation.

A fundamental question related to the above has been
raised by Peres and Wootters [I]. Is an ensemble of
identically prepared particles, viewed as an entity, more
than the sum of its components? That is, could more be
learned about the ensemble by performing a measurement
on all the constituent particles together than by performing
separate measurements on each particle? Peres and
Wootters conjectured that this is the case. In the present
Letter we prove their conjecture, although not in its letter
but in its spirit.

We have answered the above problems in the context
of a simple "quantum game. " The game consists of many
runs. In each run a player receives N spin 1/2 particles,
all polarized in the same direction. The player knows

that the N spins are parallel. He also knows that in each
run they are polarized in another direction, randomly and
uniformly distributed in space, and that the Hamiltonian
of the particles is the same in each run. The player is
allowed to do any measurement he wants and is finally
required to guess the polarization direction. (The answer
must consist of indicating a direction, i.e., the player is
not allowed to say something like "with probability Pi
the particles were polarized along . . . .") The score of the
run is cos~(n/2), where n is the angle between the real
and guessed directions. The final score is the average og
the scores obtained in each run. The aim is to obtain the
maximal score.

As it has been defined the score is a number between
0 and 1. If no measurement is performed, but a polariza-
tion direction is simply guessed at randomly, the score is
1/2. The improvement over 1/2 actually represents the
"information" gain; scores less than 1/2 also correspond
to a gain in information, but in this case the guessed di-
rection is systematically opposite to that of the spins. The
maximal score (1) corresponds to perfect knowledge of
the direction of polarization. In this Letter it is shown
that the maximum score obtainable is (N + 1)/(N + 2),
which tends towards 1 as N tends to infinity, i.e., as ex-
pected for infinite ensembles the direction of polarization
can be determined exactly.

Clearly, the above "game" is only a particular way in
which the problem of optimizing measurements on finite
ensembles might be formulated. Peres and Wootters,
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If the measured system started in an arbitrary state I@&
linearity implies

lp& lpo&MD g(&'I@& If& lpga&MD . (2)

To allow for the most general measurements we impose
no restrictions on the measuring device nor on the
interaction with the measured system. The dimension of
the Hilbert space of the measuring device is arbitrary
and might be much larger than that of the measured
system. The wave functions Ip&)MD are not necessarily
normalized, nor orthogonal to each other. The only
constraints they obey are

(3)

for example, used the same rules, but a different score,
inspired by information theory, and a different distribution
of spin directions.

This Letter is organized as follows. A general for-
malism describing an experiment is used to obtain the
equations an optimal experiment must satisfy. Next we
consider the game outlined above and obtain (N + I)/
(N + 2) as an upper bound on the score, and optimal ex-
periments that attain this score are exhibited. Last, the
conjecture of Peres and Wootters is proven when the sys-
tern consists of two parallel spins.

Following von Neumann [2], every measurement can
be considered as having two stages. The first stage
is the interaction between two quantum systems, the
measured system and the measuring device; the second
stage consists of "reading" the measuring device.

Let us denote by (Ii&) an orthonormal basis of the
Hilbert sPace of the measured system, and Igo)MD the
initial state of the measuring device. The first stage of
the measurement consists of the interaction between the
measured system and the measuring device,

I&& lpo&MD p If& lpga&MD.
f

Here also, for the sake of generality, the number of
possible outcomes g of the measurement is left arbitrary
and can be larger than the dimension of the Hilbert space
of the measured system.

We stress, because of its importance to our purpose, the
complete generality of the above formalism. It includes
ideal measurements (as described in the postulates of
quantum mechanics [2]) but also fuzzy measurements,
repeated experiments on the same system, etc. For
example, a postitive-operator-valued measure (POVM)
[3,4] is described in our formalism by simply considering
the ancilla as a part of the measuring device and letting
the rest of the measuring device act on both the measured
system and the ancilla.

Upon finding the measuring device to be in the state
g, some "information" is obtained about the state of the
system. This information could be expressed as a function
S($, @). The average value of S is

where the sums run over the outcomes g of the experiment
and the initial states @ of the system to be measured, with
a measure 27 @ corresponding to their distribution.

The problem at hand is to maximize (5) with respect to
the possible measurements and guessing strategies, while
respecting the unitary relations (3). Below, this program
will be carried out in detail in the case of parallel spins.

Before proceeding we simplify the formalism by choos-
ing the P~ s to be one dimensional projection operators
onto a basis (Ie~)) of the Hilbert space of the measuring
device. Indeed, by decomposing the original projectors
as a sum of one dimensional projectors, that is, by a more
accurate reading of the measuring device, the information
obtained in the measurement can only increase.

We now turn to the specific problem considered in the
introduction. The system to be measured consists of N
parallel spins polarized in a random direction, say (0, cp).
Denote this state

which follow from the unitarity of the time evolution
describing the interaction with the measured system and
the normalization of Ipo&MD. (To simplify notation, in
this formula and throughout the text we drop the subscript
MD whenever it is obvious that the state belongs to the
Hilbert space of the measuring device. )

The second stage of the experiment consists of reading
the state of the measuring device. This is implemented
by considering a complete set of orthogonal projectors
[P~). Different outcomes of the experiment correspond to
finding the measuring device in the different eigenspaces
of the projectors P~. The probability of the outcome g if
the initial state were I@& is

INe, ,&
=

I T o,, T o,,&.

The Hilbert space of the N spins can be decomposed
into a sum of subspaces having different total spin S
with S = N/2, N/2 —I, . . . . Since our system consists
of N parallel spins, it will always belong to the subspace
of highest spin so we have to specify the measuring
interaction only for this subspace. A basis of this
subspace is lm), m = N/2, . . . , N/2, wh—ich is shorthand
for IS = N/2, S, = m).

The unitary evolution of the spins plus measuring
device is given by

2N

P(0, F) = +&Alt'&(~ I@)MD (py IP&lpg&MD. (4) lm) 100&MD l~ &
= g If& 107&MD
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where jlf&) is a complete base of the Hilbert space of N
spins. The probability to obtain the result $ is

N/2

P(N. ,;r) = g g(N. ., I &(O,-l ~&
m, m'= —N/2 f=

&

x (eglP~ )(m'lNg ~&. (8)

where

M i(gg, pg) = sinO dO dp
(N, , lm) (m'lN„)

4m

X S(O, p;Og, qg). (13)

Upon finding the measuring device to be in the state g,
one guesses a direction of polarization O~, p~ and obtains
a score S = S(0, p; H~, rp~) = cos (n/2), as explained in
the introduction.

We have finally arrived at the mathematical formulation
of our problem. We have to maximize the average score

s„—$ sinO dO dp P(N, , ; E)S(~, V; ~g. ~j) . (9)

with the unitary constraints (written in the reading basis
leg&)

(~ l~ ) = g g(Pg leg&(eglky &
= ~

fr i

(10)

g(eqlPq'&[M (Oq, cpq)
—Ab,„„,] = 0,

m'
(12)

The variables of this problem are ling& which encode
the measuring interaction, le~) which encode the reading
procedure, and O~, p~ which encode the guessing strategy.
It is worth noting that the final states of the measuring
device lP~) and the reading base vectors le~& always
appear together, via the scalar product (P~ le~&, so we
do not have to vary them independently. Clearly, the
reason behind this is that, given a particular measuring
interaction and reading procedure, one can always find a
completely equivalent experiment by changing both the
final states of the measuring device and the way the result
is read.

Rather than work with the complete set of constraints
(10), it is convenient to consider first only the constraint

N/2 N/2

V V

m =—N/2 m= —N/2 f
=N+1,

which follows immediately from (10). The maximal
value of the score obtained by using this single constraint
equation (11) is larger or equal to the true maximum,
obtained when all the constraints are considered. In our
case the two maxima coincide. We shall first find the
maximum of the reduced problem and then exhibit a solu-
tion of the complete problem that attains the
same score.

Upon adding to S~ the constraint (11) multiplied by
the Lagrange multiplier A and varying with respect to
(P~ le~& considered as independent variables, one obtains
the following linear equations:

—, l~) +, lt;, T;, &, = 1, , 4, (14)

where lS& is the singlet state, f;, represents a spin
polarized along the n; direction, and the four directions n;
are oriented towards the corners of a tetrahedron. [The
phases used in the definition of t'„- are such that the
four states (14) are orthogonal. ] The only requirement
of the corresponding eigenvalues is that they be different
from each other so that the measurement can distinguish
between all four eigenstates. If the spins are found to be
in the ith eigenstate, the guessed direction is n;.

In the above optimal measurements the Hilbert space
of the measuring device is finite dimensional and the
number of possible outcomes of the measurement is finite.
By counting the number of parameters it can be shown

Upon multiplying the mth equation (12) by (P~ le~),
summing over m, f, and g, and using (11), a concise
expression for the external value of S~ is found to be
SN extremum ~(N + 1)~

Equation (12) has a nontrivial solution if and only
if A is an eigenvalue of M(0~, p~) (the trivial solutions
correspond to (e~lP~ ) = 0 for all m, implying that the
outcome g is never realized). The spherical symme-
try inherent to this problem can be used to show that
the matrix M(0~, p~) transforms according to the adjoint
representation of SU(2): M(0~, p~) = U(0~, p~)M(0~ =
0)Ut(0~, p~) where U(0~, p~) is an element of the N + 1

dimensional irreducible unitary representation of SU(2)
that realizes rotations of the spins, sending the +g direction
onto the O~, p~ direction. It follows that the eigenvalues of
M(0~, p~) are independent of 0~, p~. Taking 0&

——0, di-
rect computation shows that I is diagonal and its largest
eigenvalue is A = 1/(N + 2). So for this reduced prob-
lem the corresponding maximal value of the average score
is S,„,„,„=(N + 1)/(N + 2).

We now exhibit optical experiments that attain the
score S~ = (N + 1)/(N + 2), thereby proving that this
upper bound on the score can be realized.

In the case N = 1, one experiment (among many) that
attains the score of 2/3 is realized by measuring the
projection of the spin along a given axis, say the g axis
(a Stern-Gerlach experiment), and according to whether
the spin is found to be polarized along the +g or —p

direction, to guess that this is the direction along which
it is polarized.

In the case N = 2, one possible optimal experiment
consists of the standard measurement of a nondegenerate
operator that has the following four eigenstates:
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where U(O, p) is the same unitary matrix as before. One
readily verifies that the Ipf ) obey the unitary relations
and that the average score obtained by this measurement
is (N + 1)/(N + 2).

We now come to the crux of our Letter: Must an
optimal measurement on an ensemble of parallel spins
necessarily treat the ensemble as an entity, i.e., as a single
composite system? We show below that there exist no
optimal experiments consisting of separate measurements
on each spin, even though the result of one measurement
may be used to decide which measurement is to be
performed next on the other spin. (For related work
on optimizing separable measurements, see [6].) For
simplicity we consider the case of two spins.

One first makes an arbitrary measurement on the first
spin,

IT&111/Io&MD1 IT&111/It )MD1 + Il&1 lkt )MD1,

Il&1 lfo&MD1 IT&1 lpt )Mni + Il)1 lkt )Mni,
(16)

where MD1 denotes the first measuring device. The
outcomes of this measurement are obtained by projecting
the state of MD1 onto the reading base Ie~, &. According
to the outcome $1, different measurements are carried out
on the second spin (i.e., the interaction of the second
measuring device with the second spin is parametrized by

1),

11&2 I @o&MD2 11&2 10'T,g, &MD2 + Il&2 14'i, g, &Mn2,
(17)

Il&21@o&MD2 IT&21@1,g, &MD2 + Il&2141,$, &MD2,

where MD2 denotes the second measuring device. The
outcomes of this measurement are obtained by projecting
the state of MD2 onto the reading basis Ig~, ~, ); the index

appears because the way the results of the second
measurement are read may also depend on the outcomes
$1 of the first measurement. Putting it all together one

that such finite dimensional optimal measurements exist
in the general case (N spins) but have not been able to
construct one explicitly. However, allowing for an infinite
set of possible outcomes and using the spherical symmetry
inherent to our problem, a measurement that attains the
optimal score 51',„„,„canbe constructed [5].

The measuring device that gets correlated to the spins
is a particle moving on the surface of a sphere. Reading
the measuring device consists of measuring the position
of the particle. Upon finding it to be located at 0, p,
one guesses that the spins were aligned along the 0, p
direction. Let the reading basis, corresponding to a
particle localized at O, p, be denoted Ieg ~&, with the
normalization (eg~leg~~i& = 4vrBgg B~~ /sinO.

The experiment is described by the unitary evolution
equation (7) with Ipf ) given by

QN + 1 dO dp sinO
I gf&= N/2(O, v ) leep&,

(15)

obtains

It&1 IT&2 I ko&MD1 lko&MD2 p g If&1 If ')2 &eg, Ify+&

gai& a&&) = I, ga&& a&&
fk f 4l (19)

Qfg afg
fbi

=0,

byii g bytes g
= 1, g brig g bflg

f'.6 f', bz

bf+t g g bfjg g
= 0,

f ', $2

where, as above, f, f' = ],] and

af $ &eq, I pf ) bf g g (g~, , q, 14

(2o)

(21)

After completing these two measurements, one guesses
a direction of polarization O~, ~„cp~,~, which depends of
course on both outcomes.

If (18) is to describe an optimal experiment it must sat-
isfy (12) with A = 1/4 [since any optimal experiment on
two parallel spins must necessarily also be an extremum
of the reduced problem with (11) as the only constraint].
Explicitly Eq. (12) takes the form (dropping the indices

f, f', F1, C2)

2Sa+b+ + CE(a—+b + a b+) =0,
2CSE'a+b+ —(a+b + a b+) + 2CSEa b =0, (22)

SE*(a+b + a b+) —2Ca b =0,
which must be satisfied for all i, j, g1, $2. We have used
the notation C = cos(O~, ~, /2), S = sin(O~, ~, /2), and E =

Equations (22) solve to yield
+ +

afg, bf gg, CE

afg, bf gg, S (23)

&«gg„i,14f',g, & leg, & lgi, ,i, &

(18)

and similarly for the other initial states I't)11$&2, 1$&11t&2,

Ii)11i&q. Equation (18) is a particular case of the general
evolution (7), the measuring basis Ie~& being replaced by
the basis le~, ) Ig~, ~, ). Indeed the two successive measure-
ments considered here correspond in the general formalism
to a single measuring device consisting of the two pieces
MDl and MD2, and the action of the human observer who
"reads" the result of MD1 and decides accordingly what
measurement to do next is replaced by MD2 automatically
getting correlated to the final state of MD1, and tuning its
interaction with the second spin accordingly.

The unitary relations (10) are now replaced by the
unitary relations obeyed by each measuring device sepa-
rately:

1262



VOLUME 74, NUMBER 8 PH YS ICAL REVIEW LETTERS 20 FEBRUARY 1995

Upon inserting this relation into the unitary relations (20)
a contradiction is readily obtained, thereby proving that
experiments such as (18) cannot be optimal experiments.

We have generalized this proof to the case where a fi-
nite number of measurements are carried out alternatively
on the two spins. Whether an infinite number of such al-
ternating measurements can reach the optimal score is still
an open problem.
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