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By analyzing cardiac beat-to-beat intervals and interbeat increments, we find that—unlike adults—
the difference in the pattern of interbeat increments in healthy and sick newborn infants is more due
to a change in the amplitude and much less to a change in the ordering of the interbeat increments.
This suggests that very low-frequency elements of neonatal and adult heart rate variability rise from

fundamentally different mechanisms.

PACS numbers: 87.10.+¢

The time between heartbeats varies incessantly.
Though it is generally recognized that this heart rate
variability (HRV) is reduced during acute and chronic
illness, the mathematical characteristics of this change are
not well understood. Each heartbeat is characterized by a
ventricular depolarization (QRS) complex in the voltage
recorded by the electrocardiograph, and the time between
consecutive heartbeats is called the RR interval. One
way to study the mechanism is to analyze time series of
RR intervals. Another is to analyze the time series of
interbeat increments obtained from the time series of RR
intervals by subtracting one RR interval from the next.
The two strategies yield different kinds of information.
The RR interval results from many influences, some of
which are nearly static such as age and body temperature.
The interbeat increments, on the other hand, capture the
local dynamics of the system. This kind of study allows
distinction between possible mechanisms of a reduction
in HRV during illness. If the interbeat increments are
smaller during illness, the pattern of HRV might be other-
wise qualitatively similar—with the same distribution
and ordering of the interbeat increments—to that during
health, but occur on a smaller scale. We would call this a
difference in scaling. In this scenario, the interbeat incre-
ments during illness and during health, once normalized,
would have the same distribution and ordering. Another
possible mechanism is that the distributions of interbeat
increments are the same during illness (low HRV) and
health (normal HRYV), but that these differences are
ordered differently.

Peng et al. have recently developed techniques to quan-
tify such fundamental ordering properties of series of nu-
cleotides [1] and interbeat increments of heart rate data
[2]. Interestingly, they have demonstrated long-range cor-
relations in interbeat increments of a low-pass filtered
heart rate signal in adults, and have found that these corre-
lations are not present in adults with heart disease. They
showed that the difference in time series of RR intervals
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in sick and healthy adults lies not in the distribution of
interbeat increments, but rather in their ordering.

To identify the mechanism and to test the idea that
these properties found in adults are also present in new-
born infants, we have analyzed the increase in neonatal
HRYV that accompanies recovery from severe illness in a
large clinical data set. We find that the HRV of sick and
recovered newborn infants, in contrast to that of adults,
differs much more in the amplitude of the interbeat incre-
ments and much less in their ordering. This suggests that
very low-frequency elements of neonatal and adult HRV
arise from different physiologic mechanisms, and that the
difference in HRV of sick and recovered neonates is one
primarily of scaling.

The patient population and data acquisition have been
described [3]. For this analysis, we constructed 114 time
series of 8192 RR intervals from nine newborn infants
during episodes of severe cardiorespiratory failure (n =
27), and from the same infants 5 to 15 days later after
they had recovered (n = 87). We call these time series
RR,,, and we call the time series of differences from one
beat to the next D,,.

We constructed a low-pass filtered RR,, which we
call By(n), with a cutoff frequency w., = 0.005. The
effect of this digital filter is to remove frequencies above
0.005 beat™!. Many of the calculations were carried out
on the time series of the interbeat increments [2] obtained
after filtering, by subtracting the value of one RR interval
from the next. This series is called I(n). Calculations
were performed on two versions of these series—the raw
data, which we call I, (n), or after transformation to a
series with zero mean and unit standard deviation called
Tnorm ().

Frequency histograms of interbeat increments were
fitted by the Lévy stable distribution [4]

P(i,,y) = ifo exp(—vyq*)cos(qi) dq,
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or an exponential decay function

-1
P(i) = Aoexp< - )
using nonlinear least-squares methods. Data are given as
mean * standard deviation.

Figure 1 shows the analysis of the series of RR intervals.
Figures 1(a) and 1(b) are plots of RR intervals as a function
of beat number for approximately 80000 beats from the
same infant. The time series in Fig. 1(a) was acquired
at a time of severe cardiorespiratory failure, and that in
Fig. 1(b) 10 days later, after recovery. Qualitatively, there
is a great deal more HRV after recovery [Fig. 1(b)]. Power
spectra of these time series are shown in Fig. 1(c). The
record lengths were 65536 beats; spectra of overlapping
windows of 8192 beats were averaged. After recovery
there is a large increase in power at all frequencies.

The filtered time series By (n) shown in Figs. 1(d) and
1(e) isolate HRV information over long time scales. Their
power spectra are shown in Fig. 1(f). The total power
after recovery is about twice that during illness—0.19 and
0.08 msec? Hz, respectively.

Figure 2 shows the analysis of the interbeat increments,
I(n). The time series I;,w(n) in Figs. 2(a) and 2(b) show
that the interbeat increments during illness are smaller
than those after recovery. After normalization, though,
the time series I,om(n) appear more the same [Figs. 2(d)

and 2(e)]. Frequency histograms of both I,,,(n) and
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FIG. 1. Time series of RR intervals from the same infant
during illness (a) and after recovery (b). (c) shows their power
spectra—after recovery there is a fourfold rise in total power
and a fivefold rise in power from 0.02 to 0.2 equivalent Hz.
(d) and (e) are the low-pass filtered versions of time series in
(a) and (b). (f) shows their power spectra.
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FIG. 2. (a), (b), (d), and (e) are time series of the differences

between successive RR intervals of the time series in Fig. 1.
In (a) and (b) the raw differences are plotted; in (d) and (e)
the differences have first been normalized to (0,1) distributions.
(c) is a frequency histogram of all the raw differences; for
the histogram in (f), the data were first normalized to (0,1)
distributions.

Ihorm (n) are shown in Figs. 2(c) and 2(f). The x-axis bin
width is 0.01 msec, and the highest frequency in both
histograms has been made 1 to allow comparison. In
Fig. 2(c), the histograms of I,,4(n), the data distributions
are obviously very different. The mean (of the absolute)
interbeat increment increases significantly after recovery.
To quantify the difference, we fit the values greater than
0 with an exponential decay function. The exponential
factor for the data during illness was 0.0084 msec; after
recovery it was 2.5-fold higher at 0.021.

Figure 2(f) shows the frequency histogram of the nor-
malized interbeat increments, I om(n). The two his-
tograms are superimposable. The smooth line is a fit
by the Lévy stable distribution with y = 0.5 and ¢ =
1.14, and describes either data set equally well. It also
shows that the distribution of interbeat increment is non-
Gaussian [2]. The finding that the normalized data sets
share the same probability distribution is very strong evi-
dence that one data set is a scaled version of the other.
Thus, the interbeat increments differ in absolute magni-
tude—by more than twofold—but share a common dis-
tribution once normalized. This finding suggests that a
major difference between interbeat increments in low and
normal neonatal HRV is that of scaling.
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Of course, in addition to the differences in scaling, low
and normal neonatal interbeat increments could still be
ordered very differently. To determine the contribution
of ordering of interbeat intervals in neonatal HRV during
illness and after recovery, we used several strategies.
First, we implemented the mean fluctuation function F(n)
of Peng et al. [2], defined as

F(n) = |B.(n’ + n) — B(n')|,

where the bar denotes an average over all n’. The slope
of the straight line through the mean difference F(n) as a
function of the lag on a log-log plot between lag values of
200 and 4000 is calculated. Peng et al. found that these
slopes for healthy adults were significantly different from
those for adults with heart disease. Figure 3(a) is a log-
log plot of F(n) for the two time series presented in Fig. 1.
The slopes, surprisingly, are much the same—0.48 during
illness and 0.52 after recovery. Figure 3(b) shows the
slopes of F(n) for all of the data sets. There was a
13% difference—the mean « were 0.46 = 0.13 during
illness and 0.52 *= 0.09 after recovery. This suggests
that there was relatively little difference in the ordering
of the interbeat intervals, as judged by the fluctuation
function, despite the large differences in clinical status
and in HRV. Peng et al., on the other hand, found a of
0.19 #= 0.05 for healthy adults and 0.41 = 0.18 for adults
with heart disease [2].

To confirm this surprising finding, we used another ap-
proach to assess the ordering of /(rn)— we counted runs of
the interbeat increments. We defined a run as a sequence
of consecutive points falling above or below an arbi-
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FIG. 3. (a) shows F(n), the fluctuation function of the filtered
time series of Figs. 1(d) and 1(e). The straight lines were fit
to the data points from 200 to 1000 beats. The slopes are
0.48 (illness) and 0.52 (recovery). (b) shows box plots of «,
the slope of F(n), for 114 time series. The horizontal line in
the middle of each box is the median; the box encloses 50%
of the data points; the vertical bars enclose 80%. (c) and (d)
show the number of runs of interbeat increments for all the time
series. Bars are standard deviation.
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trarily defined threshold value [5]. Runs were counted
above and below thresholds of msec [for /., (n)] or stan-
dard deviations [for 1,4 (7)]. Figures 3(c) and 3(d) show
plots of the number of runs in the illness and recovery data
sets as a function of an arbitrarily defined threshold value.
Figure 3(c) shows that there are many fewer runs in the
data acquired during illness. For I, (n), the threshold
was set in multiples of the standard deviation. The nor-
malization procedure reduces the difference between the
data sets, as shown in Fig. 3(d). When the threshold was
60% of the standard deviation, the difference in the mean
number of runs was only 10%. Thus there is little dif-
ference in the ordering, as judged by runs analysis, of the
interbeat increments of newborn infants during illness and
those after recovery.

Peng et al. [2] evaluated correlations among interbeat
increments by measuring the slope of a log-log power
spectrum of D(n) from 107* to 1072 beat™!, which they
called 8. The finding of B8 = 1 implies strong long-
term anticorrelation, and was characteristic of normal
HRYV. Heart disease led to lower values of 8. If the
ordering is the same in low and normal neonatal HRV,
then B should be the same for both sets. In fact, it is not.
Like Peng ef al., we find B is 1.01 % 0.07 for D(n) after
recovery and 0.55 *= 0.04 during illness.

This relatively large change in B8 between sick and
normal HRV differs significantly from the 10% to 13%
changes in fluctuation function and runs analysis. One
possible explanation for this unexpected result is that 8 is
more sensitive to changes in ordering. Hence, we studied
B’s sensitivity to changes in ordering both in simulated
data and in our clinical data sets.

We performed numerical experiments on two number
sets stimulating time series of I(n). The first is a set
of 65536 random numbers with a Gaussian distribution
around a mean of 0 with standard deviation of 50. We call
this S;ang. The second is a set of 65536 numbers derived
by adding sinusoidal functions of increasing frequency
and amplitude with random phases. We call this Sge,.
The numbers were scaled so that Sy, also had a Gaussian
distribution with a mean of 0 and standard deviation of
50. Figures 4(a)—4(c) show segments of S;.nq and Sgein,
their power spectra, and frequency histograms. By design
the power spectrum of Sy, has a slope of 1 and S;ng
has a slope of 0. The strategy was to perturb the highly
correlated Sg, by introducing a wide range of degrees
of randomness. We accomplished this by adding scaled
versions of Sgen and Syng together. Accordingly, we
constructed number sets of the form S, = w(Sgen) +
(1 — w)(Srand). As o rises from O to 1, S, varies from
random to deterministic. The value of « is thus an
estimate of the randomness of the time series. We then
calculated B as a function of . Figure 4(d) shows that
B falls from 1 to 0.5 after incorporating about 35%
randomness.
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FIG. 4. Numerical simulations and the effect of incorporating

randomness on B. (a) shows 100 point segments of Sina
and Sgen, and (b) shows their power spectra. (c) is a
superimposition of frequency histograms overlaid with a single
Gaussian with mean O and standard deviation 50. (d) shows
the relationship of B, the slope of the log-log power spectrum,
to w for simulated and clinical data.

Because Sqern 1S DOt a true representation of heart rate
data, we performed the same calculation replacing Sqen
with clinical data sets. The same figure shows that, for
clinical data obtained after recovery, B falls from 1 to
0.55 after incorporating 15% randomness. This level of
randomness is very much in keeping with the results of
the fluctuation function and runs analysis. We interpret
this result to mean that a relatively small reordering of
clinical HRV data results in a relatively large change in
B, a measure of long-term correlation. Thus, the observed
fall in B8 from 1 to 0.55 need not imply a major change in
the ordering of the interbeat increments. To test this idea,
we reordered a data set from a healthy infant by randomly
shuffling about 10% of the data. [Shuffling is carried out
by forming a new time series consisting of —starting from
the ith point—every nth point of the original time series
X (= x1,x2,x3,...), which is then shuffled and inserted
back in (the original time series) X to form X;. The
shuffled time series X' is used to calculate B;. An average

B, B=n"'>" B is calculated from n different time
series. For 10% shuffling, n = 10.] The power spectrum
of the transformed data set now had 8 = 0.55, the same as
for clinical data during illness. Our findings thus suggest
that normal HRV can be transformed to low HRV by a
twofold to threefold rescaling and 10%—15% reordering.

We found no fixed relationship between « and 8. For
perfect fractional Brownian motion, on the other hand,
B =1 —2a. Given the fact that the records are of
finite length, and heart rate is not a perfect fractional
Brownian motion [2], we have no reason to expect a fixed
relationship between « and B.

Our argument that ordering of interbeat increments
plays a small role in neonatal HRV rests on the findings
that the fluctuation functions and the runs analyses for
healthy and sick data show little difference, and the
observed change in B can be explained by a small
change in ordering. All three techniques point toward
approximately 10%—15% reordering of the series of
interbeat increments. The physiological causes for these
differences between neonatal and adult HRV are not
straightforward to explain. One plausible interpretation
is that newborn infants have not fully developed the
autonomic or nonautonomic mechanisms for the long
range correlations so clearly evident in adults. Thus, the
normal HRV of newborns is fundamentally different from
the normal HRYV of adults.
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