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Dynamic Correlation Functions of Adsorption Stochastic Systems with Diffusional Relaxation
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We investigate the nonequilibrium behavior of dynamic correlation functions of random sequential
adsorption processes with diffusional relaxation. Depending on the relative values of the transition
probability rates, in one dimension these systems reduce to a soluble problem of many fermions. In
contrast to the standard diffusive relaxation of the macroscopic density, the correlation functions exhibit
a faster decay. Our results are supported and compared with Monte Carlo simulations.
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Lattice gas models involving random sequential ad-
sorption (RSA) have attracted considerable interest due
to their importance in many physical, chemical, and bio-
logical processes [1]. They can provide valuable insight
into a broad class of far-from-equilibrium kinetic growth
systems which have been studied intensively over the last
decade [2]. The case of dimer deposition is typical and
already exhibits very rich behavior. Recently, the inter-
play between random dimer filling and hopping of hard
core particles has received systematic attention [3]. Here
hopping allows isolated vacancies formed during dimer
adsorption to diffuse together, creating empty pairs which
have a finite lifetime and which may be filled at later
stages of the stochastic evolution. Thus, the system is
able to reach the completely filled adsorbing state. In one
dimension, the density is known to relax diffusively as
t '~ for large times.

However, knowledge of the macroscopic concentration
alone is not sufficient to describe the relative spatial
distribution of particles and therefore to take into account
fluctuation effects. The appropriate understanding of
density fluctuations and nonequilibrium short-range and
intermediate orders requires the use of more complicated
averages characterizing the spatial particle correlations.
Exact analyses of dynamic correlation functions have
been given for a broad class of RSA processes [1],
chemical reaction models [4], dynamics of diffusing hard
core particles [5], and randomly hopping lattice gases
[6]. As a contribution in this direction, here we present
an exact solution of dynamic nonequilibrium, equal-time
correlation functions of RSA systems with diffusional
relaxation. It will turn out that such correlations relax
faster than the density, i.e., as t ' rather than diffusively.

The outline of our procedure is as follows. Using a
(pseudo)spin description where spin up or down at a given
site corresponds to particle or vacancy at that location,
the stochastic evolution operator associated to the master
equation [7] is then equivalent to the action of a quan-
tum spin "Hamiltonian. " For certain choices of transition

rates, conservation of probability leads to the elimination
of many-body terms from the Hamiltonian, which now
is not Hermitian. A Jordan-Wigner transformation [8]
makes it bilinear in fermion operators. Hence, a gener-
alized Bogohubov similarity transformation [9] allows its
diagonalization, reducing it to a free fermion form. This
enables us to determine nonequilibrium correlation func-
tions by expanding the initial condition in terms of the
eigenstates of the evolution operator. The complexities
posed by the Jordan-Wigner transformation in higher di-
mensions [10] restrict our analysis to the one-dimensional
case. Nevertheless, the case d = 1 already exhibits very
rich behavior and shares the slow asymptotic kinetics ob-
served in more general situations.

We now turn to the microscopic dynamical rules of
our RSA model with diffusional relaxation. Pairs of
nearest-neighbor sites of a linear chain are selected at
random from N locations. A dimer adsorption attempt
with rate e takes place if the chosen sites are both vacant.
Alternatively, hard core particles can hop on the chain, in

principle with biased rates. Specifically, a particle at site
j (j + 1) hops with rate h (h') provided the site j + 1 ( j)
is vacant. For future convenience and for reasons which
will become clear, it is useful to introduce here an
additional microscopic process, namely, attempts of dimer
desorption with rate e' which are successful whether or
not the selected pair of adjacent particles arrived together.
It will turn out that this fictitious construction has a well
defined limit when e' is set to zero at the very end of
the calculation. Thus, our procedure can be formulated
rigorously, and the final results will follow and correspond
exactly to the original system. Further, they are in
excellent agreement with Monte Carlo simulations.

Starting from the master equation [7] and using the
constraint

e+ e'=h+h',

the stochastic evolution of this system at time t is
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governed by the action of the Hamiltonian e ', namely,

+ +H = E 0 cTJ+)
J J

g(hO ~ I O + h IT 0
+ I)

J

+ (e' —e) g o+o + Ne, (2)
J

where o., (o., ) is a spin-2 raising (lowering) operator at
site j. Adsorption (desorption) of dimers at rate e (e') is
described by the action of the first (second) term, whereas
hopping of hard core particles with rates h and h' is
represented by the effect of the third and fourth terms in
Eq. (2). Additionally, conservation of probability requires
the appearance of diagonal terms while the constraint (1)
ensures the cancellation of many-body interactions of the
form OJ+CFJ C7.,+&o.,+).

].
As is known [8], the spin-2 operators can be mapped

onto a set of spinless fermions via a Jordan-Wigner trans-
formation. After Fourier transforming to wave fermions

gq it is straightforward to show that for periodic boundary
conditions H reduces to the quadratic form

H = g[toqg~I1q + sinq(eg~ hatt + e'gqrI q) + e],
q

aiq = a —b cosq + i(h' —h) sinq, (3)
where q = ~sr/N, +3~/N, . . . , '~(N —1)qr/N, a =
e' —e, and b = e + e' [l l].

We now consider the following Bogoliubov type simi-
larity transformation [9]:

q
l

q q
(

q
n cosa n ' sinO & & vyt &

cx slil t1q cl' cos
(4)2/as'' sinq e )'tan20q =, n =

b cosq —a '

which is well defined for nonvanishing transition rates
e, e'. In terms of these operators, H can be cast as a free
fermion Hamiltonian

H = g Aqg+gq, Aq
= b —a cosq + i(h —h') sinq.

q

(5)
Thus, the introduction of the fictitious dimer desorption,
discussed so far, takes into account the intrinsic non-
Hermitian character of the evolution operator, making
possible its straightforward diagonalization. However,
notice that $+ 0 $t, where f denotes Hermitian conju-
gation. Although the transformation (4) is not unitary,
it can be easily checked that the operators $q, $+ are
indeed fermion operators defined on right and left vac-
uum states lp&, (pl such that gqlI/2'& = 0 and (plgq
Hence, lP& and (Pl are now identified as the correspond-
ing right and left steady states whereas the elementary ex-
citations g+ lP& are related to eigenstates decaying with a
lifetime rq = (b —a cosq) '. It is worth pointing out in

leo& = (1 + tanOqg s+ )lP&. (8)
0&q&m.

Therefore, recalling Eqs. (7) and (8) to determine the
evolution of the density and the two-point correlations we
are left with the calculation of

p z(t) = (Pin& 1 + g e q tangqs s+ lP&, (9)

1
GI (t) = (plnIn 1 + g e ' q' tangqg g+ +-

0&q&v
2(ReAq+Relq )2 t g t g g+ g g+ g+

0&q,q'&7r
(10)

passing that ReAq ) 0, since by construction H is a sto-
chastic matrix. In the limit N ~ ~ its spectrum exhibits
a gap g = 4 min(e, e') resulting from the creation of two
elementary excitations [11], sqo$+qolIt2'& with qo = 0+ If
e&. e' or q0=m if e )e'. Thus, for E, E' 40 the
asymptotic kinetics turns out to be exponentially fast as
it is dominated by the existence of this gap. However,
the limit e' 0+ (or, alternatively, e ~ 0+) is special in
that it gives rise to low-lying gapless modes which are
ultimately responsible for the slow asymptotic behavior
characteristic of RSA systems with diffusional relaxation.

Turning to the dynamic nonequilibrium correlation
functions we recall that it is possible to express time-
dependent averages in a simple way. As is known [12],
for a given initial state lrpo&, the particle-particle connected
correlations are given by

CI (t) = GI, (t) —pI(t) p (t),

GI m(t) = (plnInme 'lipo&,

p, (t) = (Pln, e "'leo&,

where GI (t) is the joint probability of observing simulta-
neously a pair of particles at locations I and m (two-point
correlations), whereas p, (t) is the average density of site
j. Here, n, =—o.J+crJ denotes the occupation number op-
erator which in the g representation can be rewritten as

n, = —ge' "
(cosOkgl+, — sinOkg I.)

N ~~,

X (cosOI. $I,
—sinai $+„,) . (7)

The crux of the analysis lies in the recognition that the
initial state lgo& can be expanded in terms of the elemen-
tary excitations of the evolution operator. For the sake of
simplicity, we will consider the case where the initial con-
figuration characterizes an empty substrate. This is a very
common situation within the context of RSA, thus it is of
interest to elucidate the resulting dynamics of equilibra-
tion. Similar considerations will follow for more general
situations, although for nontranslationally invariant (TI)
initial states the algebra becomes rather heavy.

After straightforward manipulations it can be readily
verified that the empty lattice corresponds to the coherent
pair state
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A word of caution should be added at this point. Al-
though the similarity transformation (4) breaks down for
vanishing desorption rates, it can be shown that the den-
sity and the correlation functions determined by Eqs. (9)
and (10) have a well-defined limit when e' 0. The cal-
culation is straightforward but lengthy. It is carried out
using the anticommutation rules associated with the Fermi
operators g~ and s+ which are well defined so long as
e, e' 4 0. Also, higher-order (many-particle) correlation
functions can be treated by generalizations of this method-
ology. After taking the limit e' ~ 0 the final result is

p)(t) = p(r) = 1 —e "Io(2er), (11)

C„(t) = e""—I„(2et) —F„+(2et)[(—1)" + F„(2 et)],

(12)
where Io(z), I,„(z) are modified Bessel functions of integer
order n = II —mI and

7 COSQe 2

F„=(z) = sinnq(1 ~ cosq) dq. (13)

0.01

0.001

sinq
We direct the reader's attention to Fig. 1 where we

display our Monte Carlo simulations. Setting e' =— 0,
the microscopic dynamical rules discussed above were
repeated N times, after which the time was increased
by one unit. Of course, intermediate measurements of
time intervals not smaller than I/N can also be attained.
The averages were taken over 2 X 103 histories of an
initially empty chain with N = 105 sites and periodic
boundary conditions. This has been adequate to suppress
fluctuations and finite size effects. The agreement with
the theoretical result given by Eq. (12) is remarkable.

The bias in the hopping rates enters neither the forms
of the density nor the correlation functions [so long as
the constraint (I) is fulfilled], as opposed to the form

of unequal-time functions (e.g. , autocorrelations) where
the bias enters in a rather complex way [13]. Since
we have taken an initially empty lattice, the correlations
(12) remain TI for all subsequent times. However, non-
TI initial conditions with long-ranged correlations might
eventually introduce significant changes, of logarithmic
type at the very least [13].

Although the integrals (13) are difficult to evaluate in
terms of known special functions, nonetheless we can
extract their asymptotic behavior. In the scaling regime
where n ~, t ~ with n2/t held finite, we obtain

1
p (t) = 1—

2gvret '

—n /2et (14)
+ 6 (n/t'I ) .4' et

Thus, the macroscopic density relaxation exhibits the
standard diffusive long time tail —t ', whereas the
asymptotic behavior of particle-particle correlations turns
out to be anomalous in the sense that they decay faster
than diffusively, namely, as t ' (see Fig. 1). It is
interesting to see how such correlations build up a
diffusive correlation length s along with the emergence
of a self-similar growth pattern. This is clearly seen from
Eq. (14) as it is immediate to show that for large times
and long wavelengths —k ' the nonequilibrium structure
factor S(k, t) satisfies time-dependent scaling

C„(r) =—

where the scaling function + and the correlation length s
are given by

—22/2

g(t) = ( te)' 'I(16.)
Hence, macroscopic density fiuctuations ~ S(0, t) decay
diffusively as t 'I Notice. that $(t) is also a measure of
the average linear domain size which grows as t'~ .

Our results have important consequences for the
kinetics of adsorption rates R (t) = (PI (1 —n, ) (I—
n, +i)e 'Icpo), one of the main experimentally measur-
able quantities. This is the fluctuation equivalent to
the mean-field statement that the rate of adsorption is
proportional to the number of vacancies in the nearby
contact. Alternatively, this (reduced) rate can be obtained
from dp/dt From Eqs. (11). and (12) it follows that

(et) 'I'
R, (t) = e "[Io(2et) —I, (2et)j = + Q(r ~ ~),

0.0001 et»1. (17)
10 100

FIG. 1. Nondiffusive decay of equal-time connected correla-
tion functions for e = 1 and h = h' = 0.5. The averages were
taken over 2 X 10 histories starting from an empty lattice of
10' sites. The numerical data (solid lines) reproduce com-
pletely the theoretical results given by Eq. (12) in the text (dot-
ted lines slightly observable at the bottom left).

Therefore, the adsorption rate decreases asymptotically
with the cube of the average domain size, i.e. , R„

It is appropriate to note that models involving RSA with
diffusional relaxation are isomorphic to problems involv-
ing irreversible desorption in competition with surface mi-
gration. Specifically, for the case of dimers, when two
isolated vacancies are brought together, either they can



VOLUME 74, NUMBER 7 PHYSICAL REVIEW LETTERS 13 FEBRUARY 1995

be covered by an incoming dimer and disappear or they
can separate again due to diffusion. Then the single-site
vacancies, labeled A. say, are effectively following the
reaction-diffusion process A. + A. inert. Such pro-
cesses have been studied extensively in the literature [14],
thus, it is worth pointing out that our conclusions apply to
those systems as well. Specifically, Eq. (12) corresponds
exactly to the pair correlation functions of these systems
(with e replaced by e ) starting from an initially full lat-
tice. Also, the constraint (1) turns out to be the condition
for our model to be equivalent to a generalized single spin
flip Glauber dynamics [15] in a description in which kinks

s, s, +~ (s, = ~1) or domain walls correspond to particle
occupation numbers nI = (1 —sisj ~t)/2 [16]. However,
note that the particle-particle correlations functions C„(t)
considered so far are highly nontrivial to determine in
such dual language as for n ) 1 they require the evalu-
ation of four-spin correlations ( s, s, +ts, +„s, +„+~) in the
Glauber model. In contrast, our methodology is more effi-
cient to accomplish this purpose and may be encompassed
within the Felderhof approach to the one-dimensional ki-
netic Ising model [17].

If the constraint (1) is dropped, no way of solving
this general situation is presently known. However, it
is likely that the elementary excitations have a gap [13].
There are other special cases in which simple correlation
functions can be found. The principal ones are e = e' =
0 (diffusion), or h = h' = 0 (adsorption or desorption).
The case treated in this work is another and is actually
more general in having only one constraint rather than
two. It is exactly soluble for any correlation function and
includes a crossover from gap to zero gap (as e' ~ 0 or
e ~ 0). Also, while the gapless behavior of the other
standard cases can be inferred from Goldstone arguments,
that is not possible for the present model.

In summary, we have reformulated the calculation of
nonequilibrium correlation functions in RSA systems with
diffusional relaxation as a soluble problem of many fermi-
ons. Generalizations of our results to higher dimensions
are clearly of theoretical and experimental interest. The
anomalous relaxation of pair correlations could be an ef-
fect related ultimately to the one-dimensional nature of
this process in which fluctuations are more profound. The
issue as to whether or not these dynamic correlations ex-
hibit such behavior for d ) 1 remains quite open.
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