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Evidence for a Divergent Susceptibility at the Glass Transition
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We present evidence for the divergence of the static dielectric susceptibility in liquids as they
are supercooled towards Tp, the temperature where the dynamics in the liquid come to a halt. This
divergence occurs when the width of the imaginary part of the dielectric response approaches a finite
limit derivable from a scaling form for the susceptibility. Fits to the temperature dependence of the
width indicate that this divergence may occur at Tp.

PACS numbers: 77.22.Ch, 64.60.—i, 64.70.Pf

It has long been known that cooling a liquid below
its melting point increases its viscosity and all the as-
sociated relaxation times for molecular motion. What
has not been clear is whether this slowing down is as-
sociated with an underlying phase transition to a glass
at a finite temperature or whether it is simply due
to kinetic effects which would not lead to any diver-
gent relaxation times except at T = 0. Certainly one
reason for the glass transition remaining a puzzle is
that, although the relaxation times often seem to di-
verge at a finite temperature, there has never been any
convincing evidence for a divergent static susceptibil-
ity or for a growing correlation length which diverges
at the same temperature at which the relaxation times
extrapolate to an infinite value. Evidence for a diver-
gent susceptibility would greatly constrain any theoreti-
cal attempt [1] to understand this phenomenon.

In this Letter we present evidence for a divergent suscep-
tibility based on an empirically determined scaling form for
the frequency and temperature dependent dielectric suscep-
tibility data of supercooled liquids. All arguments dealing
with the glass transition rely on the extrapolation of quan-
tities measured in an experimentally accessible regime to
a temperature close to the transition. In this discussion we
will likewise make three separate assumptions whose va-
lidity will be analyzed in this Letter: (i) the scaling curve
is valid down to the temperature where the dynamics has
been completely arrested (at Tp), (ii) it gives the asymp-
totic high frequency behavior, and (iii) the width of the
relaxation extrapolates to a critical value at To. Although
these are sizable extrapolations, we suggest that the analy-
sis presented here may be the best available procedure to
determine the behavior near the transition region.

The dielectric response, e(v) = e'(v) + ie"(v), has
been measured over a wide range of frequency v and
temperature T for a variety of simple liquids [2]. The
data for e" have been scaled onto a single master curve
using only three parameters: v„(a frequency characteristic
of the peak in e"), W (the full width at half maximum
of the peak in e"), and Ae —= e'(v = 0) —e'(v = ~)
(the strength of the response). Figure 1 shows the real
and imaginary parts of e(v) for the supercooled liquid
glycerol [3] at one temperature. The scaling procedure

employed to collapse the data uses an unusual choice of
scaling axes: Y = w ' log(e" v„/5 e v) for the ordinate
and X =—w '(1 + w ') log(v/v„) for the abscissa. Here
w is the normalized width: w —= W/Wo where Wo = 1.14
decades is the full width at half maximum for a single
relaxation time Debye peak. The master curve using
these axes is shown in Fig. 2. The inset to that figure
shows the local slope of the master. curve dl'/dX versus
X. The derivative of e"(v), which we will need below,
can be obtained from this slope:

d loge" (v) 1 dY
1 + 1 +

d log v dx
This scaling procedure has been used successfully not

only for simple supercooled liquids [2—4] but also for
some glass-forming polymers [5]. (Although there has
been some controversy [6] as to whether the data for these
polymers fall on the master curve below the frequency
v~, there is no dispute as to whether they fall on the
master curve above p~. Since the argument we give
below only concerns the high frequency portion of the
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FIG. 1. (a) The real and (b) imaginary parts of the dielectric
susceptibility of supercooled glycerol at 192 K versus loglpv.
The asymptotic low and high frequency values ep and e are
indicated along with their difference Ae. The full width at half
maximum W and a frequency characteristic of the peak v„are
also identified. The data are from Ref. [3].
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FIG. 2. Compiled data of s"(v) for glycerol is plotted
at a number of temperatures using the scaling axes
w ' log, o(e" z p/Aev) and X = w '(I + w ') Iog, p(v/v~).
The inset shows dy/dX for X ) 0. The slope tends to an
asymptotic high frequency value: —y = —0.72 + 0.02.

curve, the controversy concerning the low frequency end
is immaterial for the present discussion. ) Even more
remarkable, some recent dielectric data on a crystalline
system with orientational disorder, cyclo-octanol, have
also been reduced by the same scaling variables to a
single master curve that is almost identical to the one on
which all the simple liquids and polymers lie [7]. That
a crystalline system scales in the same way as the liquids
indicates that this scaling form may have a much broader
realm of applicability than had previously been realized.

We now argue that the asymptotic high frequency shape
of the master curve dictates an upper bound, w*, on the
width of the relaxation [8]. As we will show below,
this argument relies on the fact that e"(v) must decrease
monotonically at frequencies above v~.

d logs" (v) ~0 forv~ vz, (2a)
d logv

which in terms of the scaling variable gives

dF w
(2b)forX )0.

dX 1 +
As seen in the inset to Fig. 2, this slope changes from —1

close to the peak to an apparently asymptotic value of —y
at the largest value of X to which the data extends:

dY —= —y = —0.72 ~ 0.02. ()dX
Taken together, Eqs. (2b) and (3) give w ~ w = y/(1—
1). This leads to a limiting width for the dielectric
susceptibility of w = 2.6 ~ 0.3. The fact that dl'/dX
appears to have an asymptotic limit —y indicates that
e"(v) varies as a power law at high frequency:

t&( ) ~ —o. 1 —y(1+1/wl (4)
The power law behavior in the high frequency region is
visible in the unscaled data (as in the inset to Fig. 3) for
which there is a sufficient range of frequency above v~.
The prefactor of this high frequency power law can also
be derived from the master curve and goes to a finite limit
as w approaches w*.

We now show that if the master curve remains valid
throughout the supercooled liquid region then the static

FIG. 3. The dependence on w, predicted from Eq. (6), of
6Ae, the high frequency contribution to Ae, normalized to the
height of the peak, e"(v~). A true divergence will only occur if
vT approached zero and w approaches M *. The inset shows the
data from Fig. 1(b) for a"(v) versus v identifying two regimes:
v '~ (dashed line) just above the peak and v (dotted line)
at high frequency. vT is the crossover frequency between these
regimes.

susceptibility Ae diverges as w approaches w* = 2.6. The
Kramers-Kronig relations [9] relate the zero frequency
limit of the real part of the response to an integral over
all frequencies of the imaginary part:

e"(v)

In the high frequency regime, e"(v) ~ v until v reaches
a typical phonon frequency (i.e., the Debye frequency).
The lower limit of this regime is vT where the power law
v crosses over to the lower frequency behavior [e"(v) ~
v '/ ]. vr is essentially proportional to v„, varying only
slightly with w. The integral converges as long as o. ) 0.
However, as vr approaches zero (along with v„), b, e will
diverge if o- also approaches zero. This divergence comes
from the low frequency response of the system even though
the v behavior appears on the high frequency side of vp.
We are interested in isolating 6hz, the contribution to Ae
from the power law v (see the inset to Fig. 3):

65m ~ — — — . 6

Figure 3 shows the variation of 6Am as a function of
w (using y = 0.72). To demonstrate the increase in
this contribution relative to the peak height, we have
normalized 6b, s to e"(v„). As expected from the above
argument, as vT goes to zero 65e diverges at w* =
'Y/(I /) = 26.

We now discuss the temperature dependences of the
three parameters used in producing the master curve.
The frequency v~ has a very strong temperature depen-
dence, commonly fit with a Vogel-Fulcher form: ln(v„) =
ln(vp) —/t/(T Tp). In the few cases where a compari-
son has been made, the value of Tp used in these fits is
close to the Kauzmann temperature [10] where the en-

tropy of the liquid extrapolates to a value lower than that
of the equilibrium crystal [11]. Although the time scales
appear to diverge at a finite temperature Tp, neither of the
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other two parameters have previously been shown to dis-

play any unusual temperature dependence in the accessi-
ble temperature or frequency range. In Fig. 4(a), we show
the data for the measured values of the static susceptibil-
ity Ae as a function of 1/T In. the range measured, Ae
appears to vary approximately as a Curie law (Ae ~ 1/T)
and does not appear to diverge near Tp if this Curie be-
havior is indeed the correct extrapolation to lower tem-
perature [12]. However, such an extrapolation does not
take account of the growth in 6Ae that leads to a diver-
gence when the width in e"(v) approaches w*. In order
for 6Ae to contribute appreciably to Ae, w must closely
approach w* (see Fig. 3). Figure 4(b) shows that She,
which is still a very small part of the entire response over
the experimentally accessible range, is beginning to grow
significantly. To see if w approaches more closely to w*,
data must be collected at even lower temperatures than has
been done already. The possibility of getting such data is
constrained by the necessity of going to lower and lower
measuring frequencies. The lowest temperature data pre-
sented here was taken at 10 4 Hz. It is not clear how
much lower in frequency one can go.

In Fig. 5(a) we show the data for w for several
glass-forming liquids. The width is clearly temperature
dependent and increases as T is lowered. However, from
these data it is impossible to ascertain unambiguously
whether w continues to increase until it reaches w* =
y/(1 —y). The best that we can hope to do is see if
a reasonable extrapolation of the data would be consistent
with this possibility. The solid lines through the data are
fits by a simple form [13] which is constrained to give
w = 1 at high temperatures and w = w = 2.6 at Tp.

w 1 T Tp

in analogy with the Vogel-Fulcher form. In this fitting
procedure, Tp is the temperature at which the relaxation
times have diverged [i.e., where v„(T) has extrapolated
to zero in a Vogel-Fulcher fit]. The form produces a
reasonable fit with only one free parameter, C. This
fitting form implies that the static susceptibility diverges

at the same temperature where the relaxation times
become infinite and indicates the existence of a true
phase transition with a diverging correlation length at the
transition temperature. Figure 5(b) shows the data plot in
an alternative way so that an extrapolation of the data to
the origin implies w = w* at T = Tp independent of any
fitting function. A strong trend is certainly observed.

In conclusion, we have presented evidence based on di-
electric data indicating the existence of a divergent static
susceptibility associated with the glass transition. The
question of whether we should believe in a diverging static
susceptibility reduces to three assumptions: (i) the contin-
ued validity of (the high frequency part of) the master curve
down to low temperatures, (ii) asymptotic power law be-
havior out to frequencies large compared to v„, and (iii)
the extrapolation of w to y/(1 —y) at Tp, the tempera-
ture where the dynamics has been completely arrested. In
regard to the first two assumptions, we can only argue that
this scaling procedure has worked extremely well over an
enormous frequency and temperature range, and it is plau-
sible that it is the asymptotically correct behavior. Failure
of the scaling form at frequencies comparable to a Debye
frequency of the liquid will not affect the divergence since,
as T is lowered, vr moves (along with vv) to lower fre-
qUency so that the growth in Ae is associated with lower
and lower frequencies in e"(v). As far as the third point is
concerned, the quality of the one-adjustable-parameter fits
to w shown in Fig. 5(a) and the approach of w to w" at Tp

in Fig. 5(b) are encouraging.
That a divergent susceptibility should appear in a linear

response function such as the dielectric susceptibility is
surprising. In spin glass systems, which have quenched
rather than annealed disorder, the nonlinear susceptibility
diverges whereas the linear one does not [14]. However,
it is noteworthy that, at the transition temperature, a
limiting width for the magnetic susceptibility close to 2.8
(which is within error of our value of 2.6) is also obtained
in certain spin glass models [15]. It is remarkable that the
same numerical value appears for the limiting width in
these two very different glassy systems. Measurements
of the spin glass susceptibility in the high frequency
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FIG. 4. (a) As(T)/he(T = Tp) versus Tp/T for several glass-forming liquids. Tp is the temperature derived from a Vogel-Fulcher
fit to the peak frequencies. Ee(T = Tp) is obtained by linear extrapolation. (b) les/s" (v~) versus T for the same liquids. The
samples along with their values of Tp were salol, 185 K (o); dibutylphthalate, 146 K ( ); glycerol, 130 K (+); propylene glycol,
109 K (~); n-phenyl-o-cresol [with 13% o-terphenyl], 155 K (~); o-terphenyl with 9%, 175 K (6) and 33%, 164 K (C&l mixtures
of o-phenylphenol (all data taken from Ref. [2]).
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FIG. 5. (a) The temperature dependence of the normalized width w for the same set of liquids shown in Fig. 4 with the addition
of benzyl chloride (Tz = 114 K) (4) (Ref. [4]). The solid lines are single-parameter fits by Eq. (7). (b) The same data plot in
such a way that if w* = 2.6 at T = To then each data set should extrapolate to the origin.

regime may prove valuable in seeing if there are further
similarities. It is also significant that the temperature at
which w reaches w is within experimental uncertainty
of both the temperature where the time scales appear to
diverge as well as the Kauzmann temperature. All these
facts are circumstantial evidence for the existence of an
underlying phase transition at that temperature.

Because of the inevitable necessity of having to ex-
trapolate the data over large temperature ranges, any
conclusions about a divergent Ae must be regarded as
speculative. However, the dielectric data on which the ar-
guments are based are some of the most accurate available
and cover an extremely large range of frequency. They
have approached as closely as possible the temperature
where one suspects that the transition may exist. Although
tentative, these conclusions are probably the best available
clue to the nature of the dynamics as it slows to a halt and
are evidence that there is a diverging static susceptibility
and correlation length in supercooled liquids approaching
the glass transition.
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