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Disorder Induced Phase Transition in a Two-Dimensional Random Quantum Antiferromagnet
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A two-dimensional Heisenberg model with random antiferromagnetic nearest-neighbor exchange is

studied using quantum Monte Carlo techniques.

As the strength of the randomness is increased, the

system undergoes a transition from an antiferromagnetically ordered ground state to a gapless disordered

state.
dynamic exponent z = 2.

PACS numbers: 75.10.Nr, 75.10.Jm, 75.40.Cx, 75.40.Mg

The two-dimensional (2D) antiferromagnetic Heisen-
berg model with nearest-neighbor interactions on a square
lattice has been the subject of intense research over the
past few years, owing much to its relevance to the physics
of the cuprate superconductors [1]. Numerical studies
have confirmed that the ground state is ordered [2] with
a sublattice magnetization close to the spin-wave theory
prediction [3]. By including longer-range frustrating in-
teractions, or by dimerizing the lattice, the system can
be driven through an order-disorder transition [4,5]. For
a clean system, this phase transition has been argued to
be described by the (2 + 1)-dimensional nonlinear sigma
model [4,6]. Recent work on this field theory, in particu-
lar in the so-called renormalized classical [4] and quantum
critical [7] regimes, has led to a detailed understanding
of quantum antiferromagnetism in 2D. Numerical studies
[8,9] and experiments on the cuprates [10] have confirmed
that the theory is quantitatively accurate. In the presence
of randomness in the spin-spin interactions, the nonlinear
sigma model description is no longer expected to be valid
[4,7]. In contrast to the 1D case [11], very few analytic
results have been established for higher-dimensional ran-
dom quantum spin systems [12]. Because of the consid-
erable computational effort required, numerical work has
also been quite limited. Recent work has focused on the
Ising spin glass in a transverse field [13], and the diluted
Heisenberg model [14].

In this paper we report results of extensive quantum
Monte Carlo simulations of the § = % random exchange
model

ﬁ:Z‘]ijg'i's'j’ (1)

where (i,j) is a pair of nearest-neighbor sites on a
2D square lattice. The couplings J;; take two values,
Jij = J(1 £ A), at random, with a probability p for
1+ A and 1 — p for 1 — A. We consider only the
case A < 1, i.e., all couplings are antiferromagnetic and
the system is nonfrustrated. We show that there is
a parameter regime where the model has a disordered
ground state. Results for the uniform susceptibility and
the dynamic structure factor show that the disordered
phase is gapless. We also study the critical behavior of
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The finite-size scaling of the staggered structure factor and susceptibility is consistent with a

the order-disorder transition. In particular, using directly
the size dependence of the staggered structure factor
and the staggered susceptibility, we obtain a dynamic
exponent consistent with the value z = 2. The critical
behavior of this disorder-driven quantum phase transition
is thus consistent with the hyperscaling predictions for
two-dimensional “dirty bosons” [15], of which our model
is a special case.

We study the behavior of the Hamiltonian (1) in the
(p,A) plane. For A — 0 the clean 2D Heisenberg model
is recovered independently of p, and the system is hence
ordered at T = 0. For A — 1 (but A # 1) both limits
p — 0and p — 1 correspond to the 2D Heisenberg model
with dilute bond impurities. Thus, the system should be
ordered in these regimes as well. As p is increased from
0 there will be an increasing fraction of singlets forming at
isolated strong bonds in a background of weakly coupled
spins. We argue that at a lower critical concentration p =
pe1 this leads to an order-disorder transition, in analogy
with order-disorder transitions due to singlet formation
in clean quantum antiferromagnets, such as the two-layer
Heisenberg model [9] and various other dimerized models
[S]. As p is increased further, there must be another
transition to an ordered state at p = p.,, as the strong
bonds start to dominate and the weak bonds effectively
become impurities in a background of strongly coupled
spins. As A is lowered the tendency to singlet formation
diminishes, and one expects the range [ p.1(A), p.2(A)] to
become smaller and eventually vanish at some A = A,
[16]. Below we present numerical results supporting this
picture, which is illustrated by the phase diagram outlined
in Fig. 1. The solid circles are results of our quantum
Monte Carlo simulations, to be discussed below.

We have used a modification of Handscomb’s quantum
Monte Carlo technique [17,18] and averaged over 50—-300
realizations of the random couplings in order to obtain
results useful for extrapolation to the thermodynamic
limit. We have studied systems of L? spins with periodic
boundary conditions. In order to obtain ground state
results for L = 4—10, we have carried out simulations at
inverse temperatures 8 = J/T as large as 128, which for
these system sizes is enough for all calculated quantities
to have saturated to their 7 = 0 value. A theorem by
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FIG. 1. Proposed phase diagram of the random exchange
model (1) in the (p,A) plane. The solid circles are Monte
Carlo estimates of transition points between the antiferromag-
netic (AF) and gapless disordered (GD) phases. The curve is
a schematic outline of the rest of the phase boundary, based on
the arguments in the text.

Lieb and Mattis [19] guarantees that the ground state of
a finite system with an even number of spins is a singlet,
as long as all couplings are antiferromagnetic (this is not
true if A = 1, as the lattice then is disconnected). We
have therefore restricted the simulations to the subspace
with zero magnetization (3; S = 0). We have also
studied lattices with L = 32 at higher temperatures. In
these simulations Monte Carlo moves changing the total
magnetization were included.

The sublattice magnetization m for a finite system can
be defined according to

m? = 3S(ar, w)/L?, 2

where S(7r, ) is the staggered structure factor

1 .
S(m,m) = — > T HT(sisE) . (©))

L2 <

.k

For the clean 2D Heisenberg model, spin-wave theory
gives the leading size dependence of m? as [20]

m*(L) = m*(») + kL™". @)

In Fig. 2 we show results for m? at a strong-bond

concentration p = 1/4 for system sizes L =4, 6, 8,
10, and various values of the disorder strength A. An
approximately linear dependence on 1/L is seen for
A < 0.8. We therefore fit straight lines to those points
and extrapolate to obtain the sublattice magnetization for
the infinite systems. For A = 0 we obtain m = 0.276 *=
0.004 [21]. For A = 0.70 the extrapolated m? is zero
within statistical errors, and this should therefore be close
to the critical disorder strength for p = 1/4. For A > A,
the scaling with system size must change to (1/L)? for
large L, as S(r, ) saturates. We have also performed
simulations at p = 1/8 and p = 1/2, and obtained A, =
0.75 and A, =~ 0.80, respectively. These points are shown
as the solid circles in Fig. 1. The result for A.(p = 1/2)
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FIG. 2. The sublattice magnetization squared versus the in-
verse system size at a strong-bond concentration p = 1/4 and

= 0 (solid circles), A = 0.5 (open circles), A = 0.7 (solid
squares), A = 0.8 (open squares), and A = 0.9 (solid triangles).
Where not shown, statistical errors are smaller than the size of
the symbols. The dashed and solid lines are fits to the A = 0
and A = 0.7 data, respectively.

indicates that the critical concentration p., as A — 1 is
larger than the percolation threshold [16].

For a given p, with p.,; < p < p., as A — A, the
spatial correlation length ¢, diverges as 877, where
8 = |A — A.|. The correlation length in imaginary time
&, diverges as 67%%, where z is the dynamic exponent
[22]. With A > 0 Lorentz invariance is broken, and one
expects z # 1. The dynamic exponent can be determined
by comparing the size dependence of the staggered
structure factor S(sr, 7) and the staggered susceptibility
x (r, ). For a zero-temperature quantum phase transition
the exponent 7 for the algebraic decay of the spatial
correlation function C(r) is defined by [15]

1
C(V)—'m, r— o, ()
where D is the spatial dimensionality. The staggered
structure factor therefore diverges as 6 *@7¢=7. The

staggered susceptibility is given by
1 P77 70 £ p .
x(m, m) = ﬁg T dnSi @Sy, (©)
J»

and diverges as 6 *?~". Finite-size scaling theory [23]
gives the size dependence of S(#, w) and x (7, 7) at the
critical point:

S(a, ) ~ L*>7277, (7a)
x(m m) ~L*". (7b)

Hence, if S(7r, ) ~ L”s and x(ar, ) ~ L7, the dynamic
exponent is given by z = v, — ys. In Fig. 3, In[S (7, 7)]
and In[x (7, 7)] are graphed versus In(L) for two points
which we estimate to be close to the phase boundary
in the (p,A) plane. Least-squares fits of straight lines
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FIG. 3. Finite-size scaling of the staggered structure factor
(open circles) and the staggered susceptibility (solid circles) for
p=1/2,A =0.8 (top) and p = 1/4,A = 0.7 (bottom). The
straight lines are least-squares fits to the points.

give the slopes y, = 1.01 = 0.01, v, = 2.88 * 0.09 for
p=1/4,A =07 and y, =100 = 0.02, y, =3.12 =
0.15 for p = 1/2, A = 0.8. Hence, we have two indepen-
dent estimates for the dynamic exponent: z = 1.87 = 0.10
and z = 2.12 = 0.15. The indicated errors are the statis-
tical errors of the line fits. We have estimated the errors
associated with the uncertainty in the determinations of
the critical points to be smaller than these errors. For
dirty bosons, the hyperscaling theory of Fisher et al. gives
z = D [15]. The spin model considered here can be
mapped onto a hard-core bose system with particle-hole
and SU(2) symmetries. The additional symmetries might
in principle change the universality class from one of the
systems considered in Ref. [15].7 Our results for the dy-
namic exponent are, however, consistent with z = 2 = D.
The controversy regarding inconsistencies with the ex-
ponent obtained in numerical simulations of interacting
bosons in a random potential [24] also appears to have
been settled recently [25], in favor of the hyperscaling
theory.

The value of z has consequences for the behavior of the
uniform susceptibility yx,, which at the transition point is
predicted to scale as [15]

xR (s7S) ~ 8707, ®)
ij

Hence, depending on z, the uniform susceptibility di-
verges, remains finite, or vanishes at the critical point.
We have calculated y, for L = 32 systems at tempera-
tures T/J = 0.2—1.0. Results for p = 1/2 and various A
are displayed in Fig. 4. The disorder clearly enhances the
low-temperature susceptibility. In view of the fact that y,,
is nonzero at T = 0 for the clean 2D Heisenberg model,
it is unlikely that the susceptibility of the random systems
vanishes as T — 0. According to Eq. (8), this implies that
z = 2, consistent with the above estimates from finite-size
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FIG. 4. The uniform spin susceptibility versus temperature
for systems of size 32 X 32 at a strong-bond concentration
p = 1/2. Solid circles are for A = 0, open circles for A = 0.5,
solid squares for A = 0.7, open squares for A = 0.8, and solid
triangles for A = 0.9.

scaling. If z = 2, y, at A = A_ approaches a constant as
T — 0, and there is no divergence in this quantity at the
order-disorder transition. In 1D, random exchange leads
to a low-temperature divergence of the uniform suscepti-
bility [11]. This is also predicted in higher dimensions for
systems with longer-range interactions [12]. The natural
interpretation of this behavior is that some of the spins
are effectively isolated from the rest of the system due
to their weak coupling to surrounding strongly coupled
spins. One would expect this behavior for the model con-
sidered here as well, but only inside the disordered phase,
a finite distance away from the order-disorder transition
phase boundary, if indeed z = 2. It would clearly be
interesting to verify this scenario explicitly by studying
X« at lower temperatures, but unfortunately the computa-
tional effort needed exceeds what is presently feasible.

A nonzero T = 0 uniform susceptibility implies that the
disordered phase is gapless. In order to further investi-

- gate the spectrum, we have calculated the imaginary-time

correlation function C(7) = (1/N) Y (S?(7)S?(0)) and
used the maximum entropy analytic continuation proce-
dure [26] to obtain the real-time wave-vector integrated
dynamic structure factor S(w) = (1/N) Zq S(g,w). We
have calculated S(w) for both clean and random systems.
In addition, in order to test the method, we have studied
the case where the strong bonds are arranged in a regular
staggered pattern such that every spin belongs to a pair
connected by a strong bond (p = 1/4). In this case
one expects a gap for A larger than a critical value
A, = 0.39 [5]. Figure 5 shows low-temperature results
for L = 10 systems. For the staggered and random cases
A = 0.8, and the ground states of the corresponding
infinite systems are disordered. The staggered system
exhibits a clear gap: S(w) is a narrow peak centered
at w/J = 1 + A, corresponding to the energy required
for a singlet-triplet excitation of a spin pair connected
by a strong bond. For the clean system there is a broad
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FIG. 5. Wave-vector integrated dynamic structure factors for
L = 10. The dashed curve is for a clean system at 8 = 32,
the solid curve for a random system with p = 1/4, A = 0.8 at
B = 64, and the dash-dotted curve for a staggered strong-bond
pattern with A = 0.8.

maximum around «/J = 2, and a narrow peak close to
w = 0. In the thermodynamic limit, long wavelength
fluctuations of the order parameter lead to a &-function
peak at w = 0. This peak is shifted here to a nonzero
energy by the small gap present in the finite system. For
the random case the peak at @ = 0 is due to localized,
gapless excitations. There is also more weight at low
energies than for the clean system, which we associate
with localized excitations involving primarily the weak
bonds.
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