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Exact Solution of the Sutherland Model with Arbitrary Internal Symmetry
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An elementary theory is presented for solving the Sutherland model with arbitrary internal symmetry
such as SU(v) or a supersymmetry SU(v, p, ). The ground-state wave function and all the energy levels
are derived. One starts with solving a variant of the model with distinguishable particles, and then
(anti)symmetrizes the solution. The theory is also applied to various lattice versions of the model. It
is proved that the Gutzwiller-type wave function is not only an eigenstate of the supersymmetric t-J
model, but is indeed the ground state.

PACS numbers: 75.10.Jm, 05.30.—d

There has been an increasing interest in a family of
one-dimensional models with interaction proportional to
the inverse square of the distance. With the periodic
boundary condition, the model is called the Sutherland
model [1]. Several years ago, Haldane [2] and Shastry
[3] found that an 5 = I/2 spin chain with long-ranged
exchange (HS model) is solvable and that it is a lat-
tice version of the original Sutherland model. After their
work, the charge degrees of freedom, the hole, was in-

troduced into the HS model and the long-ranged super-
symmetric t-J model has been proposed by Kuramoto
and Yokoyama [4]. Since then, the Sutherland model,
HS model, and t-J model have been generalized to mul-

ticomponent systems and the generalized models have
been investigated intensively [5—7]. The connection be-
tween the degeneracy of the spectrum and the Yangian
symmetry was discussed [8,9]. In view of the fundamen-
tal physical interest in the exact spin and charge dynam-
ics in the t-J model, for instance, it is highly desirable
to develop a simple and flexible theoretical scheme for
systems with internal symmetries.

Sutherland and Shastry applied the asymptotic Bethe
ansatz (ABA) to the multicomponent Sutherland model
and derived the spectrum and degeneracy, and discussed
the thermodynamics [10]. In spite of its power and

simplicity, however, there are still unsolved issues in
the ABA. One is about the validity of the asymptotic
region in a system with finite size. Another is about the
ill-defined phase shift for equal momenta with different
spins. Hence an alternative approach is well worth a trial.

In this Letter, we present an elementary theory for de-
riving all the energy levels of the Sutherland model with
arbitrary internal symmetry. The main idea of our method
is first to generalize the calculation in Ref. [1] to a modi-
fied model for distinguishable particles. After that, we
take into account the internal degree of freedom of par-
ticles and symmetrize or antisymmetrize the wave func-
tion to represent identical particles. The present theory
has the following outstanding features. First, our method
easily identifies the ground state and gives the explicit
form of the wave function for the most general models
with SU(v, p, ) supersymmetry. Second, it gives a micro-

scopic derivation of the energy as a functional of the mo-
mentum distribution function. Such an expression with
the correct account of degeneracy is important especially
for the investigation of thermodynamics. Finally, it is also
applicable to lattice models such as the multicomponent t-

1 model. Because of these features, this theory should
provide a basis for further development such as the inves-
tigation of dynamical properties for systems with internal
symmetries.

We consider the following model:

A(A —gM;~ )+
cjx; L2,~. sin [7r(x; —x, )/L]'

'Ifp g
= 7r(x; —x, )

sin [sgn(x; —xi)]' ~t, (2)

with the eigenenergy

A
Fp = — NN2 1. (3)

Here N is the total number of particles.
Note that 'Ito i is the totally symmetric (antisymmetric)

function when g = 1(—1). Considering 4& as a function

where M;j is the exchange operator of coordinates of
particles i and j [11]. The size of the system is given
by L, P is 1 or —1, and the dimensionless coupling
parameter A is positive. Since 9f does not depend
on the internal symmetry of the particles, we consider
only the orbital part of the wave function 'P([x)). For
the moment, we regard particles as distinguishable and
do not impose any permutation properties on the wave
functions. Here we write W in the form %" = %'p~4,
where Wp ~ is the "absolute ground state, "

by which we
mean the ground state in the case where no restrictions
to the symmetry of the eigenfunction are imposed. For

we can replace gM;, in Eq. (1) by 1 since the
wave function satisfying gM;,''Iron = Not minimizes the
repulsion. Then the result of Ref. [1] for the single-
component system can be used, and the explicit form of
'Ij'p~ is given by
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of the variables z, = exp(i2~x, /L), we obtain the eigen-
value equation for 4,

+ A(N —1) gz,
) Bz~ j Bz~

+ 2A+hjk &0 = e4,

Ki

. . . . ~P(~)' gK, =g,

where P = (p(l), P(2), . . . , P(N)) is an Nth order permu-
tation and K = (K&, K2, . . . , K~) is a set of integers ordered
So that K] —K2 ~ . . . ~ K~. The action of 9f ' to p p
gives

with

ZjZk
jk

zj —
zk ( ~ZJ ~zk )

1
(1 —M~k)

4j ~k

(5)

9f'P p = +[K, + A(N —1)K;]P p
l

+ 2A g hp( j)p(k) @p& P .
j&k

The eigenvalue e is related to the original eigenenergy E
by ~ = [L/(2~)]2(& —Zo).

Since the system has translational symmetry, we con-
sider eigenfunctions with the total momentum Q. We
take a complete basis set of plane waves

After some calculation, we obtain

hp(j )p(k) 4'a, p Kk@~p + ~((zp(i))),

where R is given by

Kj Kk 1

(KZ Kk '1) (Zp(k )Zp(J)) @K'P,
I=1

0,

1fKj ~ Kk+ 2,

otherwise.

e~ p = e~ = +[K + A(N —1)K)] —2A g Kk

J j&k

= /[K + A(N + 1 —2j)K&]. (10)

Here we introduce the momentum distribution function
v(k) by v(k) = p~ B(K~, k) with B(K,, k) the Kronecker
delta symbol. Then we can rewrite the expression (10) as
a functional of v(k),

~. = g k'v(k) + —
walk

—k'lv(k)v(k').
k= —cc 2 k,k'

We then define the order of the basis. Let
K' = (Ki, K2, . . . , K~) be another set of momenta. We
write ~ ( ~ if the erst nonvanishing difference K' K,'

is positive. For instance, (1, 1, 1, 1, 1) & (2, 1, 1, 1, 0) &
(2, 2, 1, 0, 0). Similarly, we define the order of the per-
mutation P = (P(1),P(2), . . . , P(n)). If P' is another
permutation, we write P' ~ P if the first nonvanishing
difference p(i) —p (i) is positive. Each function of
the basis is characterized by ~ and the permutation
P. We write (K', P') & (K, P) if K' & K, or K = K and
P' & P. The off-diagonal elements of A' come from
the second term of Eq. (7). From Eq. (9) we see that
(K,

P'leaf

'lK, P) is zero when (K', P') ~ (K, P). Writing
out A in the ordered basis, the matrix is an upper trian-
gular one in which all matrix elements below the diagonal
vanish. We can obtain all the eigenenergies from the
diagonal elements which come from the first terms of the
right-hand side of Eqs. (7) and (8) as follows:

p = $ p + P ga r pl/„r pi (12).
K'«P'

Each eigenvalue depends only on ~ and is independent of
the permutation P. Thus, there is one-to-one correspon-
dence between each eigenstate 4 p of the present model
and that of the free system (A = 0) given by @ p.

Now we consider particles as SU(v) fermions and cal-
culate the ground state under the given color distribution
{M )"=&, where M is the total number of particles with
the color o.. First we consider the case g = 1. Since the
absolute ground state %0 i is totally symmetric, the mo-
menta of particles with the same color are ordered non-
equally ( K, & K,+). . .). We introduce the momentum
distribution of particles with the color cr by

v (k) = g 6(K, , k) B(cr, o-, ) . (13)

In this case v (k) is either 0 or 1. The energy relative
to Fo is given by Eq. (11) with v(k) = P v (k). Let us
consider the following momentum distribution:

v. (k) = e(M. /2 —lkl), (14)
where 0(k) is the step function, and each M is taken to be
odd. It is clear that Eq. (14) gives the minimum for both
the first and second terms in Eq. (11) as SU(v) fermions.
Hence this distribution gives the ground state.

Let ~g be the set of ordered momenta correspond-
ing to the momentum distribution (14). The ground-
state wave function 4g is given by antisymmetrization
of &0 pP((M ))~({o;)),where ~ is a color function and
P((o.,)) is given by

All the eigenfunctions are written in the form
B~ M, +6(a, , o) (15)
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First we antisymmetrize the coordinate of particles with the
same color. Because of the compact momentum distribu-
tion, the only part in 4 P that survives antisymmetrization
is P„p. Using the formula for the Vandermonde deter-
minant, the antisymmetrization gives

M M M~
~p

' ' —(M + l)/2+ j ' ' —(M —l)/2
1) gp( )

— gj (gj gk),
P j&k

—(M . —l)/2
N

(z, —z,)'("'")P(tM. ))
/=1 j&k

X exp i —sgn(o j
—ark) (17)

Ha and Haldane proved that this wave function is an
eigenfunction of a model equivalent to Eq. (1) with g = 1,
and conjectured that it provides the ground-state wave
function [5]. We have proved here that their conjecture
is correct. To see the equivalence between the models

where (—1) denotes the sign of the permutation. We
must multiply this by the antisymmetric color function for
different colors. The result is given by

we note that —M;, in Eq. (1) can be replaced by the
color exchange operator P;, for SU(v) fermions. On the
other hand, if M is even, the ground state is degenerate
because the highest momentum occupied can be with
either plus or minus sign. Provided that N/v is an odd
integer, the minimum energy distribution among a11 the
color distributions {M ) is given by M = N/v for all o. 's.

Next we consider the case s' = —1 for SU(v) fermi-
ons. In this case the absolute ground state Wo [ is to-
tally antisymmetric and the momentum distribution is
bosonic, v (k) = 0, 1, 2, . . . . The ground state is given
by v (k) = M B(k, O) for all o's and the ground-state
energy is just Eo. The corresponding eigenfunction is

l((z, ))P((o;)). Any distribution (M ) leads to
the same energy given by Eq. (3). Hence there is a de-
generacy (N + v —1)!/[(v —1)!N!] in the ground state.

In the cases where particles are SU(v) bosons or a
mixture of bosons and fermions, the model given by
Eq. (1) can be solved in a similar way. Thus we consider
the most general SU(v, p, ) model, i.e., particles consisting
of SU(p, ) fermions and SU(v) bosons. The wave function
for the ground state has not yet been reported for this
model. In this case, we can rewrite M;j as

—P;j if both ith and jth particles are fermions,
P;, otherwise. (18)

We first consider the case g = 1. The absolute ground
state is given by

NF
j&k

+0,1
=

j&k
If, —6I'

I ~j —~k I

j k

(19)

X exp sgn(o. —ak) P((M ))P((Mp)) . (22)

where $, (co, ) and rej (oj) are -variables for the complex
coordinate and the color of the jth boson (fermion),
respectively, and N~ (Np) is the total number of bosons
(fermions).

Let the momentum distribution for bosons (fermions)
with the color n (p) be given by (v~(k)) [{vtl (k))], and the
color distribution by 1M~)'=l [(Mp))la r], where each Mp
is taken to be odd. Since the absolute ground state (19)
is symmetric, the v (k)'s take all non-negative integers
0, 1, 2, . . . and the vt) (k)'s are 0 or 1. The minimum energy
distribution is given by

Our method is also applicable to lattice models by
taking the limit jl ~ ~ [10,12,13]. In the strong cou-
pling limit, a part of the potential A p, ~z sin [2r(x, —
xj, )/L] enforces particles to localize with a lattice spacing
L/N Up to order O. (A), the Hamiltonian decouples into

~ala + ~lat + LMad ~ (23)

where 9f,l„&j„,and FM, d are the elastic and lattice
Hamiltonians and the Madelung energy, respectively. We
define u, as the displacement from the jth lattice point
(j = 1, 2, . . . , N) and introduce a function

(k) = M B(k, O), vp(k) = e(MP/2 —IkI). (20)

The corresponding wave function "k is given by %014g,
where

dlj) = 3atl ( ) 211D ( ). (24)

NF F NF—K(o- )J
COj

F F
( )6(o, ,o.„)

j&k

x exp sgn(o. , —a.
j, ) P((M„))P((MP), (21)

with K(o.) = (Mp~ —1)/2. Similarly, the ground state
in the case g = —1 is given by aIj'O, C', where
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where j and k are no longer indices of particles but those
of sites. We rewrite A, ), as

(26)

EMad , sin'[~(J —k)/N]

N2 (28)

where b t (bq) is the creation (annihilation) operator of the
phonon field. In deriving the expression (26), we have
used the following result:

d(l) exp = —2q (q —N) +r2m'ql 2 2 N —1

N 15
(27)

The rest of 9f is given by

Thus the present theory gives unified treatment of the
family of Sutherland-type models. In every case, our the-
ory derives all the energy levels by a simple calculation.
We have proved in this way the previous conjectures
on the ground states. Furthermore, the simplicity of the
method permits us to derive new results for the ground-
state wave function of SU(v, p, ) models in both the con-
tinuum space and the lattice.

Lastly, we make a brief remark on another application
of our theory. A similar approach is useful for the
Calogero model with internal symmetry as well [14]. As a
matter of fact, the Calogero model is much more tractable
than the Sutherland model. For the Calogero model,
the local operators for energy boost were already found
[11,15]. By using such operators, we have obtained all
the eigenstates of the SU(v) Calogero model and proved
that the eigenfunction proposed in Refs. [7,14] is the exact
ground state. The details will be discussed elsewhere.

Ajp~kL, „sin'[~(J —k)/N]
'~ ~ (29)

X (numerical factor), (30)

where u(q) is the Fourier transform of the displacement
0j The %0 & corresponds to the zero-point motion of the
phonon field. Factoring out the phonon part, we obtain
the ground state of the SU(v, p, ) lattice model, which is
nothing but rI)s given by Eq. (21). The remaining effect
of %0 i is the exclusion of multiple occupation of each
site. In the special case of SU(1, 2), it is therefore proved
that the Gutzwiller wave function is indeed the ground
state of the t Jmodel [4]. -

where P,k is the color exchange operator between
the jth and kth sites. When (g, v, p, ) = (1,0, 2) or
(—1, 2, 0), Sf'„becomes the Hamiltonian of the HS
model. In the case of (g, v, p, ) = (1, 1, 2) or (—1, 2, 1),
it becomes the Hamiltonian of the supersymmetric t-1
model ~

We now derive the wave function Wg = Woi@g of
the ground state with g = 1 in the limit of A ~ ~. The
absolute ground state Wo i becomes

2N —1

Pp & exp —A — g q(N —q)u(q)u(N —q)L
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