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Solid-Fluid Coexistence for Inverse-Power Potentials
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We report Monte Carlo studies of solid-fluid coexistence for the soft-sphere potential: ¢(r) =

e(o/r)".

Applying a recently developed integration method that proceeds along a coexistence line,

we determined coexistence for essentially a continuum of softness s = 1/n from s = 0 (hard spheres)
to ca. s = 0.25. For s < 0.16, we estimate that fcc is the stable crystal, and that bcc is stable for
softer potentials; however, this result is not conclusive. We find substantial disagreement with early
coexistence data for n = 12, 9, 6; and 4, while confirming more recent studies for n = 12 and 6.

PACS numbers: 64.70.Dv, 02.70.Lq, 05.70.Fh

The thermodynamic equilibrium between two solid
phases or between a solid and a fluid is a common phe-
nomenon which has nevertheless eluded a general, quan-
titative description. The past fifteen years have been a
time of great activity in the development of theoretical
treatments for inhomogeneous fluids in general, and for
these “freezing” transitions in particular [1]. Work has
necessarily focused on a few model substances, with par-
ticular attention paid to the inverse-power potential, which
defines a system of classical “soft spheres.” This model
captures the role of molecular repulsion in freezing, and it
is characterized by the pairwise-additive, spherically sym-
metric intermolecular potential: ¢(r) = (o /r)", where &,
o, and n are model parameters and r is the molecular
separation. The soft-sphere model has several appealing
features. Its thermodynamic behavior exhibits scaling
properties which result from the dependence of the po-
tential on the single group o "; thus the entire phase dia-
gram (for a system of given n) can be extracted from a
single coexistence datum. Moreover, the qualitative fea-
tures of the phase diagram can be modified substantially
by adjusting n. For large n, the potential becomes increas-
ingly hard and short ranged (approaching the hard-sphere
potential as n — ), and freezing is into a close-packed
structure, usually assumed to be fcc; the bee structure is
unstable with respect to shear. As n diminishes toward
unity, the interactions become increasingly soft and long
ranged, and the bce phase becomes mechanically stable (at
n = 7). For the classical one-component plasma (OCP)
(n = 1), bee represents the only crystalline phase because
it is the structure of both lowest energy (at zero tempera-
ture) and greatest entropy. At intermediate n, fcc rep-
resents the lowest-energy structure, while bcc retains the
higher entropy. Thus, as the temperature is raised from
zero, there exists in these cases the possibility of a fcc-
bce polymorphic transition which precedes the transition
to the fluid. This behavior is seen in the alkali metals and
in iron.

Advancement of theories of freezing has been facili-
tated by model “experimental” data made available by
molecular simulation [2,3]. These phase-coexistence data
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are not easily obtained. Computational limits on the sys-
tem size preclude the physical approach to evaluating co-
existence, in which both phases are placed in contact in
the same simulation volume; the interface—if it can form
at all—overwhelms the bulk behavior. In practice, ho-
mogeneous phases must be simulated, and coexistence
established by satisfying the well-known requirements
of thermodynamic phase equilibrium. Two problems
arise: First, the conditions of coexistence can be found
this way only by performing a search which requires
many simulations at “uninteresting” state conditions (i.e.,
away from coexistence). Second, the chemical poten-
tials needed to establish coexistence can be notoriously
difficult to evaluate. Insertion-based methods (including
Gibbs ensemble Monte Carlo [4]) are difficult to reconcile
with the nature of the crystalline phase (even considering
defects [5]), and are generally unreliable for dense sys-
tems. Thermodynamic integration has therefore arisen as
the method of choice for evaluating solid-phase chemical
potentials. It is reliable and it fits well with the coexis-
tence search process. However, even this approach is not
trouble-free, and much effort has been devoted to devising
reliable integration pathways to implement it. A typical
report describes great efforts that, in the end, yield a few
precious coexistence points or possibly a single isotherm.
Nonetheless, the utility of the data so obtained certainly
has justified the efforts. Monte Carlo calculations per-
formed for the soft-sphere potential with n = 1 [6], 4, 6,
9 [7], 12 [8-10], and o0 [11,12] have confirmed much of
the qualitative behavior described above. There is, how-
ever, substantial disagreement between early simulation
data and the results of two (n = 12 [13] and 6 [14]) more
recent studies that adopt better integration pathways. Dis-
cussion follows below.

The recently introduced Gibbs-Duhem integration
method [15] represents what is arguably the most efficient
combination of the search and the integration procedures
needed to determine phase equilibrium by molecular
simulation. Integration advances along the coexistence
line, so each simulation yields a phase equilibrium point.
The method has been used to evaluate vapor-liquid
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coexistence in pure substances [15] and mixtures [16],
and solid-fluid coexistence in a model for Cgq [17].

The present Letter describes application of the Gibbs-
Duhem integration technique to freezing in the soft-sphere
model. The study is interesting in several respects. The
integration path chosen here involves a mutation of the
potential, rather than a traversing of thermodynamic state
space. This approach makes it possible to obtain a
detailed picture of the phase behavior along a continuum
of values of n from the hard-sphere limit to about n = 4.
In addition, it is demonstrated how the emergence of
new phases (viz., the bcc crystal) can be accommodated
by the technique. Surprisingly, the integration method
remains reliable even as the transition becomes very weak,
although it does show limits.

The method begins with a variation of the isothermal
Gibbs-Duhem equation

d(Bu) = BpvdlInp + Ads, €))
where w is the chemical potential, v is the molar volume,
p is the pressure, and B = 1/kT, with k Boltzmann’s
constant and 7' the absolute temperature. The parameter
s = 1/n describes the softness of the potential, and takes
on values from zero (hard spheres) to unity (OCP); A is
defined by Eq. (1). Given two coexisting phases of soft
spheres, Eq. (1)—written for each phase—may be used
to derive the change in the saturation pressure dp required
to maintain coexistence as the softness s is perturbed an
amount ds

olnp) _ M- h
( as )sal N ,Bp(vl — vy) —f(s,p), 2)

where the subscripts indicate the two phases and the
equation defines f(s, p); this formula is a variant of
the Clapeyron equation. In the Gibbs-Duhem method,
Eq. (2) is integrated using predictor-corrector techniques
as any first-order ordinary differential equation might be.
The right-hand side is evaluated by isothermal-isobaric
(NpT) Monte Carlo (or molecular dynamics) simulations
conducted for each phase simultaneously; the simulated
phases occupy their own volumes, and thus are not
in direct contact. The parameter A is given by the
ensemble average A = —Bes (o /r)"/*In(a/r)). The
pressure is continually refined throughout the simulation
as the averages of A and v in each phase converge
to their final values. Once complete, the process may
be continued by incrementing s and repeating, thereby
yielding the coexistence properties over a wide range of
values of s. The hard-sphere coexistence datum provides
a convenient starting point for this procedure [11]. Also,
in this limit A can be expressed in terms of the volumetric
properties [18]: Ays = 3y(Bpv — 1), where vy is Euler’s
constant.

Using this method we determined solid-fluid coexis-
tence properties of the soft-sphere potential for values
of the softness parameter from zero to ca. 0.25, in steps
of 0.01. Our results are displayed in Fig. 1. The NpT
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FIG. 1. Coexistence lines determined in this study. Confi-
dence limits (67%) are indicated where they are larger than the
plotting symbol. Numbers in the legend refer to the number of
spheres used to simulate each phase (solid, fluid). The inset is
an expansion of the region near s = 0.

Monte Carlo simulations were conducted for two system
sizes (solid, fluid): (108, 128) and (500, 432) (the small-
system series was conducted in steps of 0.005). Standard
cubic periodic boundary conditions were imposed on
the solid, while truncated-octahedron periodic boundaries
were used for the fluid phase; long-range interactions
were handled in the usual manner [3]. Each simula-
tion sampled 10000 cycles beyond an initial relaxation
period of 5000 cycles, where a cycle represents one at-
tempted translation per particle and five attempted volume
changes. Further details will be presented elsewhere [19].

There are several potential sources of error in the proce-
dure. First is the stochastic error in v and A, which gives
rise to corresponding errors in f(s, p), and eventually in
the pressure p. We have estimated this error by analyz-
ing the fluctuations in v and A according to the method of
Kolafa [20], and applying standard propagation-of-error
rules to estimate the error in the pressure. The resulting
error bars are indicated in Fig. 1. This source of error be-
comes more important as s increases and the transition
becomes weaker [f(s, p) becomes the ratio of increas-
ingly small numbers]. The small-system calculations suc-
cumbed to the effect relatively early, as the accumulating
error in the pressure led the fluid to crystallize at s = 0.17
(this could of course happen even if the pressure is not in
error, and it is more likely to do so for a small system).
Error due to the finite integration step was estimated by
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reapplying the integration formulas to half of the simula-
tion data (thereby doubling the integration step size), with
little observed effect on the large system (although halv-
ing the step size from 0.01 to 0.005 had a measurable
influence on the small-system results). Errors related to
stability —which concern whether errors in the pressure
are amplified or attenuated by their effect on f(s, p)—can
be significant if the integration path proceeds in the di-
rection of a weaker transition [16], as is the case here.
To gauge its effect, we performed a brief series of simu-
lations along the fcc-fluid coexistence line, from n = 12
to n = 9; the n = 12 pressure was displaced by 8% be-
fore beginning the series. The resulting coexistence line
proceeded along a course parallel to the original, indicat-
ing that small errors in p have an insignificant effect on
f(s, p) (for s in this range). A final source of error arises
from the finite size of the simulated systems. Figure 1
indicates that this error is not significant for small values
of s, but for large s (>0.16) we cannot gauge its extent
without data for yet larger systems.

Emergence of a thermodynamically stable bcc phase
can be detected by performing a series of simulations
for bee soft spheres, following the (s,p) path defined
by the fcc-fluid integration. We apply a Wigner-Seitz
single occupancy (SO) constraint [11] to ensure that the
(mechanically unstable) bcc crystal does not melt. At
every point along the path, the chemical potential in each
phase a can be computed by introducing Eq. (2) into
Eq. (1), and integrating the simulation data

Bruals. p(s)] — BultS = f ((Bpv)afl5. p(5)] + AJd5 .

The resulting values of w for the fcc and fluid phases
will, of course, be the same along their line of coexis-
tence. We expect the SO bee chemical potential to begin
at a higher value, and to approach the fcc-fluid values
as the integration proceeds. Eventually the curves should
intersect, indicating three-phase coexistence. From this
point on, freezing of the fluid into the fcc phase is super-
seded by freezing into the bec, and fluid-fcc coexistence
no longer occurs. The integration procedure can, in prin-
ciple, be continued along both of the coexistence lines
(bee-fluid and fec-fluid) that emerge from the triple point.
The (metastable) fcc-fluid coexistence line can also be ex-
tended by continuing the integration procedure.

We evaluated the chemical potentials for the bcc
and fcc phases in this manner, and we plot the result
in Fig. 2. We computed this curve twice, performing
two independent fcc-fluid series to s = 0.30, and two
corresponding bcc series (to s = 0.17). The difference
between the two fcc-fluid saturation pressures remained
well within their estimated errors. The reproducibility
of the chemical-potential difference is also very good
for s in the range 0.0-0.13. However, beyond this
point significant discrepancy is observed between the two
values. This result is not entirely surprising, as ttfec —
Mbee here is the small difference between large (ca. 50)
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FIG. 2. Difference between the chemical potentials of the
fcc and bec phases as a function of the potential softness,
relative to the difference for the hard-sphere system (i.e., Ay =
Mfcc — Muec)- The open squares and diamonds are results from
two independent integration series, and the filled circles are
their arithmetic mean.

numbers. The shaky behavior exhibited in this range of
softness reminds one of the difficulty encountered when a
SO system is compressed through its density of stability
[11]: a bee crystal of soft spheres achieves mechanical
stability [21] only beyond s = 0.1305.

We have chosen to work with the average of our two
series, presented also in Fig. 2. The difference between
the fcc and bee chemical potentials as a function of s may
be obtained from this curve by adding the corresponding
difference for hard spheres. We determined the SO bcc
hard-sphere chemical potential at the fcc-fluid coexistence
pressure by integrating our own Monte Carlo data for the
equation of state of the SO bcc crystal. The constant of
integration was provided by a study of the hard-sphere,
SO (spherical cell), bce crystal conducted by Curtin and
Runge [22]. Using Frenkel and Ladd’s [12] datum for
the fcc crystal, our result is ,uchf - ,uECSC = —0.12. From
Fig. 2, this value implies that the fcc-bee-fluid “triple
point” occurs at approximately s = 0.16. This result is
sensitive to errors that could be introduced at many places
in the procedure. Curtin and Runge, for example, apply
an extrapolation which we estimate could give rise to an
error of as much as —0.03 in uhs. A change of this
magnitude would cause the triple point to shift down to
s = 0.10. However, as noted above, a (unconstrained)
crystal of bce soft spheres is mechanically unstable for
this value of s.

Taking the fluid-fcc-bee triple point as s = 0.16, we
conducted a separate Gibbs-Duhem integration series for
the bce-fluid coexistence, and the result is indicated in
Fig. 1. We find that the bcc-fluid and fce-fluid coexis-
tence lines remain essentially indistinguishable through-
out the range of softness that we studied, and indeed the
curves actually cross several times as the softness is in-
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creased. These crossings must be attributed to stochas-
tic error, as it is unlikely that the fcc crystal would re-
gain stability relative to bcc at freezing. The fcc-fluid
series was halted at s = 0.30 upon melting of the crys-
tal, although it is clear that by s = 0.28 the accumulated
error had become unmanageable. We performed several
other bce-fluid series (not shown), taking the triple point
to be s = 0.15 and 0.14, respectively, and another begin-
ning with Laird and Haymet’s [14] bcc-fluid coexistence
datum for s = 1/6. All of these series produced bee-fluid
coexistence lines that begin and remain below the reported
curve, and all were terminated at s = 0.23 to 0.25 because
the crystal melted. We did not investigate fcc-bee coex-
istence beyond the estimated triple point, as the extreme
weakness of this transition would very likely render the
integration method unusable.

Literature data are also displayed in Fig. 1. Early fcc-
fluid coexistence calculations were performed by Hoover
and co-workers [7,8] for n = 12, 9, 6, and 4, and agree-
ment is seen with the result for n» = 12 obtained by
Hansen [9] at about the same time. These methods em-
ployed integration from either a low temperature state
that is characterized by lattice dynamics or a low density
state using the SO constraint. They agree also with the
datum of Cape and Woodcock [10], who evaluated the
n = 12 solid-fluid coexistence properties by direct simu-
lation of both phases in the same volume. Ogura et al.
[13] used a SO pathway to determine once more coexis-
tence in the » = 12 model. Their calculations were more
careful than Hoover ef al. [8] in dealing with the “kink”
seen in the SO isotherm, and their coexistence pressure
differs significantly from that established by the previ-
ous workers. Laird and Haymet [14] very recently com-
pleted a study of the n = 6 potential, and they report the
existence of a stable bcc phase. Their calculations em-
ployed a modification of the lattice-coupling integration
scheme introduced by Frenkel and Ladd [12]. They too
find a (metastable) fluid-fcc coexistence pressure that dif-
fers significantly from the results of Hoover, Gray, and
Johnson [7].

Our calculations support the conclusions of Ogura et al.
[13] and Laird and Haymet [14] regarding the fluid-
fcc transition. We find that all of the early studies
yielded saturation pressures that are too low, with the
possible exception of the n = 4 datum of Hoover, Gray,
and Johnson [7], which lies within our fcc-fluid error
bars. We agree with Laird and Haymet that the bee-fluid
and the (metastable) fcc-fluid coexistence points are very
narrowly separated at n = 6; our data lie slightly above
theirs, but the difference cannot be considered significant.
It is notable that the fcc-fluid and bcc-fluid saturation
curves do not diverge appreciably as the softness is
increased.

An unexpected result of our study is observed at the
outset of the fcc-fluid series, and is highlighted by the
inset in Fig. 1. We find here, near the hard-sphere limit of

softness, a shallow minimum in the melting curve. Such
an unexpected feature—not to mention the presentation of
the entire coexistence line—would be extremely difficult
to characterize using any established simulation method.
Thus the Gibbs-Duhem integration technique promises
to provide a rich set of simulation data with which to
test new theories of phase coexistence, in general, and
freezing, in particular.
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