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We monitor the dynamics of superconducting vortices in the Bean state, as the system is driven to
the threshold of instability by the slow ramping of an external field. Individual avalanches, containing

as few as 50 vortices, are detected in real time.

Thus our experiment is the superconducting analog

of monitoring the granular avalanches produced by slowly dropping sand on a sandpile. The observed
distribution of vortex avalanche sizes shows a power-law behavior over two decades, proving that the
vortex dynamics in the Bean state is characterized by avalanches of many length scales.

PACS numbers: 74.60.Ge, 05.40.+j, 64.60.Ht

Some 30 years ago Bean [1] and de Gennes [2] noted
the close analogy between the marginally stable state of
vortices in a hard superconductor and the marginally stable
slope of sand in a sandpile. We can picture building up a
sandpile by slowly dropping grains on a flat surface. The
slope of the pile soon reaches a certain “maximal angle
of stability,” determined by a balance between gravity
and intergrain frictional forces. A similar situation is
present in a hard superconductor (i.e., with strong pinning).
Vortices nucleate at the surface as an external magnetic
field is slowly ramped. In the simplest model, due to Bean
[1], the vortex density decreases linearly with distance
into the superconductor. This again is due to a balance
between vortex density gradients which drive vortices
into the bulk and pinning forces which hamper their
entry. These early analogies were invoked mainly in
order to understand the static distribution of flux in a hard
superconductor. More recently, interest has focused on
the dynamics of systems slowly driven to the threshold of
instability. A large number of diverse physical systems
are characterized by such dynamics, including charge-
density waves, pinned Wigner crystals, earthquake faults,
granular assemblies, and superconducting vortices. These
systems have received renewed attention due to their
relation to spatiotemporal dynamics, instabilities, and self-
organized criticality. Sandpiles have received particularly
intensive theoretical and experimental attention as a model
system exhibiting such threshold dynamics. In light of
the strong static analogies between sandpiles and the Bean
state in hard superconductors, it is natural to ask whether
there are quantitative similarities between the dynamic
processes (e.g., similar avalanche size distributions) in the
two systems.

Here we report results of an experiment on the dynam-
ics of vortices, which is closely analogous with those done
on sandpiles. The magnetic field outside a tubular super-
conducting sample is ramped slowly, driving flux into the
tube’s outer wall. Eventually, the flux front will reach the
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inner wall of the tube and spill out into the tube’s interior.
We can detect, in real time, this entrance of flux into the
tube’s interior (Fig. 1). In particular, we can measure
whether flux leaving the superconductor does so in dis-
crete bundles or avalanches; if so, we can measure the
sizes, lifetimes, and arrival times of these avalanches. Our
experiment is thus the superconducting analog [3] of sand-
pile experiments [4,5] where the sand is slowly added to
the apex of the pile; any sand which falls off the edge in
the form of avalanches is then measured. Sandpile ex-
periments which use a slowly tilting table [6] or rotating
drum [7] may be more closely analogous to current-driven
depinning of vortices [8].

| uhl ﬁllHJ n h
wo
~ | b
2 1000 @,
=]
s
&
C O e, 750 @
I ° 10 mS or 50 mG ’
time or magnetic field
FIG. 1. The voltage measured on the pickup coil as the

magnetic field is ramped at 5 G/s. Frame (a) shows a 30 G
segment centered at B = 7.55 kG. There are 262144 data
points in this segment. The voltage trace consists of a series
of many pulses, of widely varying sizes. Each pulse represents
the sudden influx of a correlated vortex bundle or avalanche
into the tube’s interior. Frames (b) and (c) show successive
magnifications of frame (a) by factors of 10 horizontally. The
area under each pulse determines the number of vortices in the
avalanche, as shown for several representative pulses.
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FIG. 2. The probability density D(s) of measuring an
avalanche of size s versus s. Distributions are shown for three
magnetic fields, with the exponents shown determined from fits
to the linear portion of each curve. The best-fit lines extend
up to the points included in the fit. There are 5187 avalanches
logarithmically binned for the 7.55 kG curve. The inset shows
the arrangement of the tubular NbTi sample and the pickup
coil.

The experimental arrangement is shown in the inset of
Fig. 2 and is similar to those used in Refs. [9] and [10].
A thin-wall tube of conventional [11] superconductor
Nbag7a wi Tiszs, was prepared by cold swagging, with a
reduction in diameter of = 4:1 to a final diameter of
6 mm and thickness 0.25 mm. A 3.4 cm length was
cut from the original piece. Inside the tube is a 1.8 cm
long coaxial pickup coil, consisting of N = 1800 turns of
copper wire. All experiments were performed with the
tube immersed in the helium bath. The Bean critical state
forms in the tube’s wall [12,13], as an external magnetic
field, parallel to the tube’s axis, is slowly ramped up
from zero. Eventually, the external field reaches a value
such that flux first enters the interior of the tube. This
flux induces a voltage N d®/dr on the pickup coil,
which we measured using an amplifier with a dc to
20 kHz bandwidth amplifier with 1 nV/+/Hz noise. The
data were digitized at 40 kHz and recorded directly to
computer disk.

If some flux should enter the tube as a vortex bundle
or avalanche, this will induce a voltage pulse on the
coil. The area under the pulse can be converted directly
into the number of vortices s in the avalanche, as s =
[V dt/N®,, assuming that the vortex bundle cuts all N
turns of the coil. There is evidence [14] that this may not
be so. If not, then the actual number of vortices in the
bundle is saciua1 = s(L/I), where s is the measured value
described above, and L and [ are the length of the coil and
of the vortex bundle, respectively. We may then write
s & Isa.cual Which describes an effective vortex bundle
volume, which is the natural extension of the meaning of
the “size” of an avalanche to a three-dimensional system.
With this caveat, however, we will still call s “the number
of vortices in an avalanche.”

Figure 1 shows the signal recorded by the pickup coil
as the external field is ramped at a rate of 5 G/s,
corresponding to about 6 X 10°®, entering the tube per
second. Figure 1(a) shows a 30 G segment centered at
7.55 kG, from a 0 to 8 kG field sweep at a temperature
T =29 *+ 0.1 K. The striking feature of this signal
is that it is not at all smooth; instead, it consists of
a succession of very pronounced pulses. Each pulse
represents the sudden influx of many spatially correlated
vortices, in what we term flux avalanches [15]. It is also
quite apparent that there is a very wide distribution of
pulse sizes and lifetimes. Figures 1(b) and 1(c) show
successive enlargements of the boxed regions indicated.
It becomes clear that individual pulses are reasonably well
separated in time, and that their areas are well defined.
Calibrations of the detection system bandwidth show that
a step change in flux yields a pulse width of only some
50 ws, much shorter than the widths of pulses shown in
Fig. 1. Thus the “tails” of the pulses in Fig. 1 represent
an inherent feature of the vortex avalanches. In Figs. 1(b)
and I(c), several pulses (including the tails) have been
integrated to yield the number of vortices shown. Several
large events consisting of several thousand @ are visible,
along with smaller events with only a hundred or so
®,. A careful analysis of the data indicates that we
can reliably measure avalanches consisting of as few
as 50 vortices; the largest avalanches found in this field
range contained about 5000 vortices. The noise floor of
the amplifier is responsible for the small-scale “fuzz” seen
in these time traces.

It is important to note that most of the flux does
not actually enter the tube as discernible avalanches. In
Fig. 1(a) we see that the avalanche activity rides on top
of a dc value of d® /dr, which corresponds to the mean
ramp rate of the external field. We find that the fraction
of flux entering in measurable avalanches is about 3%
of the total. We expect that some fraction of this dc
signal is due to large numbers of avalanche events too
small and too frequent to be measured with our apparatus.
The bulk of this dc signal, however, is likely due to
thermally activated vortices moving into the tube in a
fluidlike manner. Thermally activated flux motion can be
large near the critical state, where the activation energy
for hopping goes to zero. In their noise measurements,
Yeh and Kao [16] also find that only a fraction of the flux
moves in the form of flux bundles.

The concept of self-organized criticality [17] was
introduced to explain the dynamics of certain slowly
driven dissipative systems with many degrees of freedom.
A sandpile was used as a model system in which to
explore these ideas. Such systems are critical in the sense
of a second-order phase transition, and so exhibit long-
range spatial and temporal correlations. They are self-
organized in that the critical state is an attractor of the
dynamics, and so the system evolves toward criticality
without tuning an external parameter. For example, in
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sandpiles, the long-range correlations are presumably
manifested as power-law distributions of avalanche sizes
and lifetimes, which occur at the critical angle to which
the sandpile naturally evolves [4—6].

The Bean state is certainly self-organized in the sense
that the vortices are dynamically driven toward a margin-
ally stable state. We may ask whether it is a critical state
as well, characterized by power-law distributions of bun-
dle or avalanche sizes. The distribution of flux avalanche
sizes for our experiment is shown in Fig. 2, where we plot
the normalized probability D(s) that an avalanche will
contain s vortices, versus s. The normalization is such
that D(s) ds is the average number of avalanches recorded
with sizes between s and s + ds, and we have used loga-
rithmic binning. Here we show distributions of events
occurring in three 450 G wide windows centered at 2.25,
5.33, and 7.55 kG. At all fields, D(s) has a power-law be-
havior, s 7, up to some cutoff size. The low field data, at
2.25 kG, appear straight up to avalanche sizes of about
1500 vortices. The cutoff here is very sharp, with no
events recorded above s =~ 1500. The middle field data
at 5.33 kG show power-law behavior up to s = 2000 vor-
tices. Above this size, there is a gradual decay away from
the power-law curve. Still, the power-law dependence ex-
tends over 1.6 decades of 5. Finally, at the highest field of
7.55 kG, the distribution has two full decades of power-
law behavior for avalanches up to 5000 vortices.

It is interesting to compare these results with those
obtained in sandpile experiments. Most closely analogous
to our work are experiments [4,5] in which the sand is
slowly added to the apex of the pile. Here, a broad
distribution over several decades of avalanche sizes in
small piles was found. For large piles, the systems
reverted to the relaxation oscillator behavior of rotating
drum experiments [7], although even here close inspection
of the pile mass indicates the presence of many small
avalanches [5]. It is important to note that the linear
extent of “large” piles from apex to base is still only
some 50 particles [5]. In our vortex experiment, the
distribution is broad at all fields studied, with power-
law behavior over as many as two decades. Here, finite-
size effects are presumably minimal, as there are some
9000 vortices across the tube’s wall at the highest field
of 7.55 kG; overall, the tube contains about 3 X 10°
vortices at this field. Thus our largest avalanches span
only about 1% of the tube’s width and contain only about
107% of the total number of vortices in the tube. No
relaxation-type behavior was observed in our experiments.
An important difference between vortices and sand is the
crucial role that inertial effects play in granular systems.
Since vortices have essentially no inertia, it is reasonable
to expect their dynamics to be much closer to ideal
sandpile models [17,18].

Our experiment shows that the exponent v measured
in the dynamical critical state is not constant, since it
ranges from —2.2 for the low field data to —1.4 for
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the middle field data (Fig. 2). Interestingly, the slopes
are not monotonic in field, since » for the highest field
data increases again to —1.8. Since the dominant pinning
centers in our sample are grain boundaries with spacings
randomly distributed between about 30 and 50 nm [19],
this variation in » with magnetic field may be related
in some way to the interplay between the interpin and
intervortex spacing. The variation of » is also reminiscent
of the different exponents extracted in various sandpile
experiments, as their “microscopic” parameters such as
grain roughness are varied. Theoretically, » has been
found to vary in different sandpile models as the cellular
automata “rules” are changed [18], as well as in a two-
dimensional model of coupled blocks [20] as the coupling
is varied. This later result is relevant to our experiment,
since increasing the field changes the average vortex
density and hence the vortex-vortex interaction. The
vortex system is thus unique in that the interactions
between the particles can be continuously tuned. The
data shown in Fig. 1 were taken at a ramp rate of 5 G/s.
At this rate, individual vortex avalanches can be readily
identified, and distributions as in Fig. 2 formed. It is
important to verify that the system is, in fact, in the
slowly driven regime. We have thus studied the ramp-
rate dependence of the avalanche activity. Field sweeps
were taken at ramp rates R of 1, 5, 10, and 20 G/s. At
low ramp rates, R = 10 G/s, the data look similar to that
shown in Fig. 1. At the highest ramp rate of 20 G/s,
however, the data look qualitatively different. Here it
becomes difficult to identify individual avalanche events,
since many avalanches are overlapping at this high rate.
Thus we cannot form distributions of avalanche sizes at
the highest ramp rate. Instead, for all rates we compute
the power spectrum S( f), defined here as the square of the
Fourier transform of a field sweep similar to that of Fig. 1.
Such power spectra are shown in Fig. 3. We see that, for
low ramp rates, the spectra all show a power-law behavior
over some three decades, with the same exponent of about
—1.5. This power-law behavior is expected from a field
sweep whose distribution of event sizes itself has a power-
law behavior [21]. Thus we believe that the ramp rate of
5 G/s used to obtain D(s) is well within the slowly driven
regime. At the highest ramp rate of 20 G/s, however,
there is a distinct Lorentzian-like knee [with S(f) =
f7?% for large f] emerging from the overall power-law
behavior. This Lorentzian shape indicates an emerging
field and time scale, so that the strongly driven system
is no longer at the critical point and hence no longer
spatially and temporally scaleless. Experiments in water-
droplet avalanches [22] and noise measurements in type-II
superconductors [16] have also shown such an emergent
length scale as the system is strongly driven. It appears,
then, that critical behavior is achieved only very near the
marginally stable state, when the system is slowly driven.

We have presented evidence that the marginally stable
(or Bean) state in hard superconductors exhibits flux



VOLUME 74, NUMBER 7

PHYSICAL REVIEW LETTERS

13 FEBRUARY 1995

10
0™
N0k
S~
o~
=
& 0
07k
]0—18 L
E i L poaaaaaal Ll i
10 100 1000 10000
frequency (Hz)
FIG. 3. Power spectra of magnetic field sweeps, at four

different ramp rates. For low rates, the spectra show a power-
law dependence, with the same exponent. At the highest rate of
20 G/s, however, a distinct knee is apparent (inset), indicating
the emergence of a characteristic field or time scale. This data
was taken over a 0.25 kG wide window centered at 7.55 kG for
the highest rate; proportionally smaller windows were used at
the lower rates.

avalanches with a power-law distribution of sizes when
slowly driven foward the threshold of instability. This
is consistent with theoretical predictions of flux-gradient-
driven vortices [3]. We contrast our work with relaxation
studies [23] in which the system instead moves away
from the marginally stable state, where it is unclear that
critical behavior should be observed. Further, in our
experiment we were able to directly measure the sizes
of individual avalanches, the power-law distribution of
which is the hallmark of the critical state. Experiments
which measure 1/f noise alone [24] cannot be taken as
proof of criticality [25]. Our results thus indicate that the
well-established static analogy between superconductors
and sandpiles can be extended quantitatively to dynamical
effects as well, with the two systems exhibiting similar
threshold dynamical behavior.
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