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Selection Rules for Transport Excitation Spectroscopy of Few-Electron Quantum Dots
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Tunneling of electrons traversing a few-electron quantum dot is strongly influenced by the Coulomb
interaction leading to Coulomb blockade effects and single-electron tunneling. We present calculations
which demonstrate that correlations between the electrons cause a strong suppression of most of the
energetically allowed tunneling processes involving excited dot states. The excitation of center-of-mass
modes, in contrast, is unaffected by the Coulomb interaction. Therefore, channels connected to these
modes dominate the excitation spectra in transport measurements.

PACS numbers: 73.20.Dx, 73.40.Gk

Transport measurements are a highly sensitive tool for
the investigation of the electronic structure of semicon-
ductor quantum dots. While the differential conductance
of such a system in the linear transport regime is domi-
nated by the classical Coulomb blockade effect [1],quan-
tum mechanics leaves its fingerprints in magnetic field
dependent addition spectra [2,3] and in excitation spectra
which can be obtained from conductance measurements in
the finite drain-source voltage regime [4—6].

Because of a small electronic effective mass, quantum
dots in semiconductor heterostructures exhibit a discrete
level spectrum, easily discernible at low temperatures.
Since the charge of these quantum dots can be controlled
at the single-electron level, they are often called artificial
atoms. The lateral confinement potential which binds the
electrons to the quantum dot is typically created by spa-
tially extended charge distributions. Therefore, it obeys a
parabolic dependence on the distance from the center of
the system (~ r ) rather than the 1/I. dependence charac-
teristic of the core potential of natural atoms [7]. In anal-

ogy to the optical spectroscopy on conventional atoms the
first attempts to study the excitation spectrum of these ar-
tificial atoms have been made by far-infrared (FIR) spec-
troscopy [8—11]. However, the long wavelength of the
far-infrared radiation together with the parabolic confine-
ment potential prohibit most transitions into excited states
by strict dipole selection rules [12,13].

Transport spectroscopy, on the other hand, is expected
not to suffer from these restrictions, but to allow a unique
full spectroscopy of the level structure in these artificial
atoms. Nevertheless, experiments on few-electron quan-
tum dots exhibit only a sparse excitation spectrum with
relatively large level spacings [5]. These measurements
suggest that the dominant resonances are due to a con-
stant level spacing, independent of the number of elec-
trons in the quantum dot. This behavior, which could be
understood for a noninteracting electron system, is indeed
remarkable, since the Coulomb interaction strongly inAu-

ences the energy spectrum of the quantum dot and leads
to small level spacings and strong correlations [12,14].

Thus, the experimentally observed large level spacing
together with the appearance of a characteristic excitation
energy demand an explanation. We present calculations
which show that even in transport experiments the ex-
citation spectra are dominated by center-of-mass modes,
similar to the situation in FIR spectroscopy. This gives
rise to the constant level spacing with the characteristic
single-particle excitation energy. This situation is caused
by a suppression of most other transitions due to strong
correlations between the electrons.

We study the transport properties of a two-dimensional
quantum dot coupled to two reservoirs by tunneling bar-
riers in the conventional tunneling Hamiltonian approach
[15]. The Hamiltonian of the system is given by a sum
of the dot Hamiltonian HL), a reservoir Hamiltonian H&,
and a tunneling term HT. The tunneling Hamiltonian de-
scribes the transfer of electrons from the reservoir, where
the Coulomb interaction between the electrons is effec-
tively screened (metallic regime), to the quantum dot,
where interactions are most important. Our results are
based on features of the few-particle eigenstates of the
quantum dot which we obtain from a numerical diagonal-
ization of the dot Hamilton operator

H~ = ~ Enid d~ + V~mn m d, dmdn dm .
n, m, n', m'

It describes interacting electrons in a parabolic confine-
ment potential subjected to a perpendicular magnetic field
B. The single-particle energies e are connected with left
and right circularly polarized oscillator eigenmodes,

e. = 60 (X, + 1/2) + hA (A + 1/2), (2)

with A = ( 4Ao + co2 ~ co,)/2. Ao characterizes the
confining potential and co, = eB/mc is the cyclotron
frequency. A crucial feature of the parabolic confinement
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potential is the separation of the dot Hamiltonian into a
relative and a center-of-mass (CM) part [16,17], where the
spectrum of the CM Hamiltonian is identical to the single-
particle spectrum (2) and independent of the number of
electrons in the dot. It is this separation which prohibits
in FIR spectroscopy the observation of the spectral fine
structure of these artificial atoms, and makes visible only
the CM excitations. The Coulomb interaction between
electrons enters only the Hamiltonian of the internal
degrees of freedom (relative part). We obtain the matrix
elements for the interaction V, ,« in closed form for
the usual I/er Coulomb potential with the dielectric
constant e.

Regarding only sequential tunneling, the current
through the quantum dot is given by [15]

I = —e g I [P(N, u) + P(N —1, n')j
n, n'

~ If(~E... —~) —y(&E.. —p, )],
where the resonant energy AE = E(N, n) —E(N—
1, n') is the difference between the energy of an N-particle
state n and an (N —1)-particle state u'. The Fermi-
Dirac distribution function f characterizes the occupation
of electron levels in the left (electrochemical potential p, i)
and the right (p, „) reservoir. The probability P(N, u) of
finding the quantum dot in the N-particle state n will
deviate from its equilibrium value for a given drain-source
voltage (p, i

—p, ,)/e. Its dependence on the tunneling
rate I is well described by kinetic equations [15,18]
and leads to the blocking of conducting channels and
negative differential conductance [5,15,19].

In a "random phase" approximation, i.e., neglecting
phase correlations between the initial state of the electron
in the lead and its final state in the quantum dot, the
tunneling rate I factorizes into an effective tunneling
rate for a noninteracting electron traversing the barrier,

y, and an overlap or spectral weight matrix element [15].
(For simplicity, we assume a constant effective tunneling
rate and neglect the dependence of y on the single-
electron dot states. ) The overlap matrix element is given
by g I(N, ~IdJI(N —I), ~'&I' (4)

n

This quantity describes to what extent the compound state,
built by an incoming electron and the (N —1)-electron
state a' in the dot, overlaps with the N-electron dot state
n. While for an uncorrelated electron system this over-
lap evaluates to unity, correlations reduce it considerably
[15,20]. Because of the summation over all single-particle
dot states with equal weight in Eq. (4) this quantity is
insensitive to any features of the incoming electron. It
only rejects the correlations in the states n and a'.
In the following we will concentrate on these over-
lap matrix elements, as they predominantly determine
the transport through the quantum dot (for levels sep-
arated by more than kT, as discussed, for example, in
Ref. [15]; in experiments, kT = 50 mK = 4 p, eV). Our
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FIG. 1. Level scheme of a parabolic quantum dot with
one, two, or three electrons at B = 0 T. Arrows rep-
resent the corresponding addition energies. Parameters
for all figures: confining energy Ao = 2 meV; GaAs
parameters: dielectric constant e = 12.4, effective massI* = 0.067m, .

numerical results are obtained for quantum dots with up to
N = 3 electrons.

Figure 1 shows the spectra of a quantum dot (QD) oc-
cupied by one, two, or three electrons (QD hydrogen, QD
helium, or QD lithium) at zero magnetic field. Because
of the Coulomb interaction the level spacing of the few-
particle spectra is much smaller than the single-electron
level spacing, which is given by the confining energy
CIAO = 2 meV (this value is characteristic of experimen-
tal geometries, such as the system in Ref. [5]). Enforced
by energy conservation, tunneling through the quantum
dot is only allowed when the energy of the incoming par-
ticle matches the energy difference between a QD helium
(lithium) eigenstate and a QD hydrogen (helium) eigen-
state. The occurrence of all energetically allowed transi-
tions would clearly result in a dense excitation spectrum.
That contradicts recent experiments [5]. Thus, it is not
only the energy requirement which determines whether an
electron tunnels through the quantum dot. A mechanism
to select certain transitions is provided by the overlap ma-
trix elements, Eq. (4).

One of these selection rules is evident from spin con-
servation [19]. For our few-electron quantum dots they
forbid transitions between a spin singlet state of QD he-
lium and a spin quartet state of QD lithium. This already
has consequences for the usual Coulomb blockade oscilla-
tions, as transitions between the ground states of QD he-
lium and QD lithium (G-G transition) in a perpendicularly
applied magnetic field are considered. The total spin of
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the ground state of these few-electron systems oscillates
between its maximum (triplet, respectively, quartet) and
its minimum value (singlet, respectively, doublet), when
the magnetic field is increased [16,17]. Figure 2 shows
the ground state energy of QD helium and QD lithium as
a function of the magnetic field B. The total spin is in-

dicated for the different field ranges. For most values of
the magnetic field G-G transitions are possible. However,
as indicated in the figure, two field ranges occur where
the ground state of QD helium is a singlet while that of
QD lithium is a quartet: the G-G transition is blocked.
Thus, a drastic reduction of the conductance in the linear
response regime should be observed when the magnetic
field is tuned into these ranges.

However, spin selection rules alone are not sufficient to
explain the sparseness of the observed excitation spectra.
Apart from an angular momentum conservation in the dot,
the effect of which is annihilated by connecting the dot
laterally to the leads, the overlap matrix elements, Eq. (4),
provide no further strict selection rules. Nevertheless,
very small spectral weights strongly reduce the probability
for the occurrence of the corresponding transitions. This
gives rise to quasiselection rules. Figure 3 shows the
values of the overlap matrix elements for transitions
from the QD-helium ground state to all states of QD
lithium at B = 0. They correspond to the most important
processes, if the quantum dot is in its ground state before
the subsequent tunneling process. Since the two-particle
ground state is a singlet state, only transitions into doublet
states are possible. Transitions into degenerate states are
subsumed under the same peak, since all corresponding
overlap elements contribute accordingly to the tunneling
rate at a given energy AE. This applies especially to

40

the double degeneracy with respect to the z component
of the doublet spin, giving rise to a factor of 2 in the
peak heights. At low energies, below 15 meV, the figure
exhibits a few regularly spaced dominant peaks with
several relatively smaller ones between them. This energy
regime coincides with the experimental situation where
only one electron tunnels at a time [5].

The first peak at 9.7 meV corresponds to the G-G tran-
sition. The B = 0 states are, apart from the spin degen-
eracy, degenerate with respect to the sign of the angu-
lar momentum. Therefore, the three-particle ground state
(with an orbital angular momentum of 6) is fourfold de-
generate. Each of these states contributes equally to the
peak shown in Fig. 3. Thus, the individual overlap ma-
trix elements [Eq. (4)] are much smaller than unity, in-

dicating the strong correlations in the few-particle states.
Nevertheless, compared with the other spectral weights
the individual overlap matrix elements of the G-G tran-
sition are the largest. Therefore, these transitions oc-
cur with the highest probability. They are followed by
a transition which is subsumed in the peak appearing at
11.7 meV, i.e., at an excitation energy of 2 meV = AAo

above the G-G transition. This transition corresponds
to a state of the three-particle system with one quan-
tum of CM excitation in addition to the ground state en-

ergy. As a consequence of the separation of the CM
and relative motions, each transition within the internal
degrees of freedom is accompanied by independent ex-
citations of CM modes. Since the excitation spectrum
of the CM motion is equidistant, these transitions give
rise to equidistant conductance peak replicas (see arrows
in Fig. 3). Moreover, at zero magnetic field the CM en-

ergy spectrum is highly degenerate. Therefore, the over-
lap matrix elements of several transitions contribute to the
tunneling probability for a given resonant energy. It is this
prevalence of the CM excitations which provides an expla-
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FIG. 2. Ground state energy of a parabolic quantum dot
with two and three electrons as a function of the magnetic
field B. Spin states are indicated: 5 = singlet, T = triplet,
D = doublet, and Q = quartet. Arrows mark those field ranges
where G-G transitions are forbidden by spin selection rules.
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FIG. 3. Summed values of the overlap matrix elements for
transitions between the two-particle ground state in the quantum
dot at B = 0 and all states of the three-electron system as a
function of the transition energy AE. Arrows indicate center-
of-mass excitations.
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nation for the experimental observation of a characteris-
tic level spacing independent of the number of particles in
the quantum dot: The CM spectrum is independent of the
number of particles in a parabolic quantum dot and equals
the single-electron spectrum [12]. (Notice that the small
thermal broadening of the Fermi level in experiments, typi-
cally 100 mK, will not blur the different CM excitations,
occurring with much larger spacings, 2 meV here. )

It is clear that in addition to the G-G transition tunnel-
ing via other internal excitation states is possible, with their
corresponding CM excitation replicas (see second pair of
replicas in Fig. 3). In some cases (e.g. , in the transition
from the single-particle ground state to the first-excited
two-particle state, not shown here) the overlap matrix ele-
ments can even be larger than those of the G-G transition.
Because of their large degeneracy, transitions which end
in a maximum-spin state produce very pronounced series
of replicas, much stronger than the ones shown in Fig. 3.
The occurrence of more than one group of dominant repli-
cas gives rise to smaller level spacings in the spectra. Both
effects have been observed in experiment for different N
states in the dot. However, we found in all cases that only
few groups of dominant replica occurred, while most ex-
citations of internal degrees of freedom are suppressed in
tunneling. In our model, with a constant tunneling rate y,
this suppression is solely due to correlations of the few-
particle wave functions. These strong built-in correlation
effects lead to nearly forbidden transitions. Notice that the
effective suppression of internally excited states becomes
less pronounced in the high energy range, as indicated by
a more even distribution of high-overlap peaks in Fig. 3.

Although our calculations only include systems with up
to three electrons, general conclusions can be drawn for
quantum dots occupied by more electrons. As long as cor-
relations strongly inhuence the low energy excitations, a
strong reduction of most overlap matrix elements occurs,
leading to quasiselection rules. These will suppress most
transitions involving excitations of the internal degrees of
freedom in the rather dense spectrum. Since the CM mo-
tion remains unaffected, these degrees of freedom can be
excited easily. Thus, it can be expected that they would
likewise dominate the transport resonances. Another as-
pect enhancing the effect of dominant CM excitations may
arise especially in large quantum dots laterally connected
to the reservoirs by split gate tunnel barriers. This geom-
etry forces the electron to enter at a certain point at the
edge of the dot. This introduces a large dynamical dipole
moment in the system built out of the incoming electron
and the (N —1)-particle state in the dot. As known from
far-infrared investigations, CM excitations give rise to a
strong dipole moment. Therefore, one would expect that
the overlap of such a compound state with a CM excitation
will be larger than others, thus favoring it for tunneling.

A basic assumption for the discussion so far has been the
strict separation of CM and relative motions which is only
fulfilled in a truly parabolic confinement potential. How-

ever, calculations which take into account anharmonicities
of the confining potential [21] have shown that for real-
istic conditions [22] the coupling between the CM mo-
tion and the relative motion is weak, leaving the demon-
strated mechanism for dominant CM excitations essentially
unchanged.

In summary, the analysis of the overlap matrix elements
which govern the tunneling rate for an electron traveling
through a quantum dot shows that the strong correlations
present in few-electron dot states are extremely important.
They strongly reduce the probability of tunneling through
channels involving excitations of the internal degrees of
freedom. This leads to a dominance of the center-of-mass
excitations which are not affected by correlation effects.
The center-of-mass excitation spectrum is identical with
the single-particle spectrum of an electron in the parabolic
quantum dot, independent of the number of particles.
These features give an explanation for the experimental
observations in the nonlinear, single-electron tunneling
regime, showing relatively sparse excitation spectra with
the characteristic single-electron level spacing.
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