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The dynamics of a nonlinear Schrodinger chain in a time-varying, spatially uniform electric field is
studied and proven to be integrable. In the limit of a static electric field, the system exhibits a periodic

evolution which is a nonlinear counterpart of Bloch oscillations.

It is shown that localization can

be dynamically induced by a temporally harmonic field as a consequence of parametric resonances

at certain field strengths.

The effects of integrability-breaking discrete lattice terms are studied

numerically: Nonlinear Bloch oscillations and dynamical localization are found to be a property of

the lattice and not limited to the integrable case.

PACS numbers: 71.50.+t, 03.40.Kf, 52.35.Mw, 73.20.Dx

The question of how a charged particle will behave
in a perfectly periodic crystal in the presence of a static
electric field has a long and fascinating history [1].
The advent of technology for fabricating semiconductor
superlattices has stirred new interest in the implications of
this basic quantum transport problem. For example, one
potential application is the realization of a Bloch oscillator
as a fast emitter of electromagnetic radiation. It is known
that an electric field of strength £y will induce localization
of the particle, which executes a “Bloch oscillation” with
the Bloch frequency wp = e£pa/hi. Associated with this
phenomenon is the Stark ladder (SL), n(e£ya) [2], where
n is an integer and a is the lattice spacing which here will
be set to unity (we also set i = 1, e = 1 in the following).
The periodic oscillatory motion of the particle reflects
the fact that the SL, i.e., the energy eigenspectrum of
the system, is evenly spaced. Recently, these phenomena
have been confirmed by various laboratory experiments
[3]. Since the Bloch oscillation is a consequence of
the underlying periodic lattice structure, the essential
physics should remain the same with the periodic crystal
being replaced by a semiconductor superlattice, an array
of coupled quantum wells or a molecular chain. A
simple theoretical approach which captures the underlying
physics is to use tight-binding models. In this context,
dynamical localization of a charged particle induced by a
time-periodic electric field has also been discussed [4].

In the present Letter we consider a generalization of
the tight-binding model to a nonlinear case where the
nonlinearity is an effective self-interaction of the particle.
This nonlinearity can be induced by, e.g., interaction with
the lattice as in the case of excitons in a molecular chain
[51, or electron excitations in polaronic contexts [6]. The
nonlinear system without the external electric field is a
discrete, one-dimensional nonlinear Schrédinger equation
(NLS) for which nonlinear localized excitations have been
extensively studied [7,8]: The role of nonintegrability
as a perturbation to an integrable system has been
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examined [8,9], also novel discreteness effects have been
contrasted with the continuum limit [8]. In the following
we will show that the system, in a certain limit and
in the presence of a time-dependent electric field, is
integrable and possesses an infinite number of conserved
quantities. For the temporally harmonic field, there exist
resonance conditions for which the evolution of the wave
function of the particle is periodic and the system exhibits
dynamical localization. Furthermore, as the frequency
of the external field approaches zero, we recover the
discrete NLS in a static electric field [10], and the periodic
motion persists with precisely the Bloch frequency £y
which occurs without the nonlinearity. We note that these
similarities with the linear problem show that, for certain
nonlinearities, some linear characteristics persist and can
be extended to highly nonlinear regimes. Mathematically,
this is related to the fact that the time evolution of
a system for which the inverse scattering transform
(IST) is applicable is determined by an associated linear
problem. Finally, we emphasize that in both the linear
and nonlinear cases Bloch oscillation and dynamical
localization are consequences of the underlying periodic
structure, i.e., lattice discreteness: We will show an
example of a discrete nonlinear system which is not
integrable [8,11], but for which the above phenomena
nonetheless substantially persist.

The governing differential-difference equation for our
chain system is

i‘:bn = - (l//nJrl + ¢n~l) - Iu'(‘l/nJrl + 'ﬁn—l)lwnlz
- 2V¢n|l/’n‘2 + Vatba, €8

where the overdot denotes the time derivative, n is a
site index, and V, is an external field. The u term and
v term can be viewed as the first order correction to
the intersite overlap integral and the on-site frequency,
respectively, taking into account the nonlinearity as the
induced self-interaction. Here time and space have been
scaled such that the zeroth order hopping constant is unity.
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By a simple gauge transformation the zeroth order on-site
frequency has been shifted to zero. The corresponding
Hamiltonian can be written as

2
H= =Wt + ) — flenlz

+ 12(2—” + Vn)ln(l + ulgal?), )
Ay
with the deformed Poisson brackets {i,,¢,,} =0 =
W ks s i} = i1 + g |?) S m.

The system (1) has been considered in Ref. [8] in the
absence of the external potential. In the limit» = 0,V, =
0, it is the Ablowitz-Ladik lattice system [12], which is
completely integrable and possesses an infinite number of
conservation laws for the infinite lattice. In general, the
system (1) is not integrable. When the external potential
is time dependent, the system is no longer conservative.
Nevertheless, there exists at least one conserved quantity,
N = pu 1>, In(1 + uly,l?), which serves as a norm of
the system as long as V,, is real. In this Letter, we study
the system with a potential in the form

Ve, =2(t)n, 3
where £(¢) is any function of time. This potential cor-
responds to a time-dependent, spatially uniform electric
field along the chain direction. It generalizes the case of
a static linear potential, whose soliton dynamics was stud-
ied in Ref. [10], and for which we will comment on below
regarding the dynamics of the radiation as well as that of
solitons.

In what follows, unless specified otherwise, we will
restrict ourselves to the system with » = 0 and the
potential (3) for which it can be shown that Eq. (1)
is exactly integrable (as in usual IST analyses, we
assume that the wave function decays sufficiently rapidly
at boundaries). The general case with » # 0 can be
treated perturbatively and a detailed study will be given
elsewhere [13]. The system (1) with » =0 and V, =
£(¢) n admits the zero-curvature representation [14]:

L, +L,A, — AL, =0, (4)
where

(A iy
L"_(iwn A'1>’
A = (O =) = AN AY
"N ATt A =i =ty — A2 1)

with f, = £(t)n/2 + 6,8 = —£(t)/4 — 1 [where we have
set u = 1 by virtue of the scaling property in Eq. (1)]
[15]. We note that the spectral parameter for the above
IST problem is time dependent,

A= 2A(), A@) = expl:i I g—g;) d'r] N )]

and therefore requires slight modifications to the usual
time-independent spectral theory of IST. It can be

solved by generalizing the approaches formulated in
Refs. [16,17] to the lattice. It can be shown that the
scattering data obey the following time evolution:

aAD,1] = a(x0),0), 2020 = p (2 )Osm,

a
cj(t) = cjo AD)S()]y,;, (6)
S(t) = exp[—ift dr (2 + 28 — A% — /\_2)},
0

where /\i is the jth zero of a(A,¢) and a = a™, b = b¥,
A= ()", and ¢; = c;k/(/\j‘)z, due to the well-known
symmetry [12] between the off-diagonal elements in the
scattering matrix L,. The system still possesses an infinite
number of constants of motion which are of the form,
C, = AW®)*"C,,m =1,2,..., where C,,’s have the same
algebraic expressions as those for the conserved quantities
in the absence of V,, (see, e.g., [12]). For example,
the first in the hierarchy is C; = — > "% ¢ ,+,, whose
real and imaginary parts are related to, respectively, the
energy and momentum of the system and are conserved
when V,, = 0. For the present case, C; has the temporal
behavior A(z)"2C;, where C, is a constant. Note that
the norm N is a conserved quantity in addition to the
conserved hierarchy.

We now particularize to the temporally harmonic poten-
tial £ = &ycosw?, for which we have the periodic flow of
the spectral parameter, A(z) = exp[i(ysinwt)/2w], and

S(1) = A exp[~(AF — 252w (@) + i (A5 + AgHu(D)] ,
(7)

where
& 1 « 1 &

u(t) “—“Jo(‘g)t +— Z —Jan (‘0) sinRnot),
w W on w

v(r) = 2 Z %—1_1*]2,1‘1 (50) X {1l —cos[(2n — Dwt]},

@ 2 ;
)]

and J,(x) are Bessel functions of the first kind. It can be
readily seen that the scattering data are periodic with the
period T = 27 /w, if &y/ 0w = XX, i=1,2,..., with x? the
ith root of the zeroth order Bessel function Jy(x). It then
follows by IST that the time evolution of the system (1)
with » = 0 is also periodic with the same period as the
external driving. We shall refer to the series of values
of the ratio £y/w as parametric “resonance conditions.”
Physically, these lead to the recurrence of the field in time
by the time-periodic potential. In other words, a particle
can be dynamically trapped by the potential if the particle
is initially localized in space. This is precisely the same
dynamical localization phenomenon studied in Ref. [4] for
linear tight-binding chains. For the linear system, there
exist the same resonance conditions which must hold in
order for the system to exhibit dynamical localization. At
resonance, since the time evolution of the system only
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contains the harmonics of w, for any initial condition, it
is plausible that these harmonics could be experimentally
detected when the electric field strength is tuned to the
resonance ratios.

In Fig. 1 the evolution of the system (1) with » =0
is shown when the resonance condition holds [18]. The
recurrence phenomenon is evident. Initially, the wave
function was taken as a combination of a wave packet of
a Kronecker 8-function form and a soliton wave packet.
The wave packet initially localized at a single lattice site
gradually disperses into low-amplitude radiation modes
and eventually refocuses to the & function, whereas the
soliton never disperses, is dressed by the radiation, and
may emerge from the radiation unchanged. We note in
passing that this recurrence has a parametric resonance
nature [19]. Therefore, any small deviation from the
resonance ratio will grow linearly in time; hence there
is a slow destruction of the recurrence in time. For
example, in Fig. 2 we show an off-resonance example of
the evolution starting with the same initial field profile.
Here we see dispersion of the radiation modes in contrast
to the robust particlelike motion of the soliton.

In the large  limit, the dynamics of the solitons closely
resembles that of solitons without the external potential.
This is simply a manifestation in the solitonic dynamics of
the Kapitza decomposition of the motion of a particle under
a periodic forcing into slow and fast components [19].

We note that the behavior of the system (1) in the
v = 0 integrable limit is qualitatively preserved even in
the presence of the on-site nonintegrability, i.e., » # 0.
Thus, Fig. 3 displays similar radiation modes to those
in Fig. 1, although the soliton slowly disperses, merging
into the radiation background for the system with u =
1, v = —0.5, and &/w = x. It is not surprising that

time
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FIG. 1. The evolution of the system (1) with x = 1 and
v = 0 at the resonance condition £/w = x!, where x} is the
first zero of the Bessel function Jy(x) and w = 0.06. Plotted
here is |, (#)| (see text). For all simulations presented here,
we used sufficiently long chains that the boundary effects are
negligible.
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FIG. 2. Example of an off-resonance condition. The parame-
ters are the same as Fig. 1 except that £,/w = 0.9x).

the radiation still exhibits the recurrence qualitatively
because, for the low-amplitude wave function, the features
of the system can be captured in the linear limit for which
the resonance condition for dynamical localization is
again exact [4]. The evolution has a qualitative “localized
chaos” structure, but is bounded by virtue of the lattice
discreteness.

For the static potential, V,, = £, n, we obtain

1 .
u(t) = g_o sin(&pt) ,

1 )
v(1) = 5’_0[1 — cos(&ot)],

which can also be derived by taking w — 0 in Egs. (8).
Again, it can be shown that the system evolves period-
ically for any initially localized profile. The periodic
soliton motion obtained in Ref. [10] serves as a special
case here. The temporal period now is T = 27w /&,
which is determined by the strength of the static ex-
ternal field. There are only the harmonics of the

—-100 —-50 o] 50 100

FIG. 3. Dynamics of a nonintegrable system with x = 1 and
v = —0.5atg/w = x}, o = 0.06 (cf. Fig. 1).
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frequency £ in the evolution of the system. These
harmonics are directly connected to the harmonics of
the linear Bloch oscillation in the weakly nonlinear, i.e.,
low-amplitude, regime, as the IST approaches the Fourier
transform in this regime [12]. Hence, this spectrum can
be regarded as a generalization of the linear Stark ladder
spectrum. Evidently, these characteristics of the evolution
as the nonlinear counterpart of Bloch oscillations preserve
the features of Bloch oscillations in the linear system.
Notice that in the small £y < 1 limit, only on the time
scale t+ < 1/4/Zp can we recover the evolution of the
system for the potential-free case. In general, no matter
how small & is, the periodic motion persists. This is true
of both the linear and the nonlinear cases. It is worthwhile
comparing with the evolution of a wave packet for the
continuum limit in the presence of a spatially linear,
static potential. For the linear Schrodinger equation, the
widthof the wave packet increases, whereas the solitonic
wave packet for the nonlinear Schrodinger equation
has a permanent wave profile. However, both of their
centers execute a parabolic motion in time, just as for a
classical particle moving in a constant gravitational field
[17]. There is no periodic motion. Obviously, when
discretization is introduced in numerical simulations for,
e.g., these systems, care should be taken about the time
scale on which the results of the simulations are a valid
representation of the continuum limit.

In summary, we have established that the NLS,
Eq. (1), with » = 0, is integrable in an external time-
varying, spatially uniform electric field. This work
further extends our understanding of dynamics in dis-
crete nonlinear systems under external driving, and is not
restricted to simple soliton dynamics. We have demon-
strated that the discrete nonlinear system considered still
exhibits the phenomena of Bloch oscillation and dynam-
ical localization, as a generalization of the known linear
cases. For the nonintegrable situation, these phenomena
also qualitatively persist. We thus suggest that these
phenomena are fundamental to discrete lattices and may
be observable in appropriate experimental settings even
where the nonlinearity is strong.

We thank Markku Salkola and Stuart Trugman for
stimulating discussions. This work was performed under
the auspices of the U.S. DOE.

Note added.—After the submission of this Letter, we
became aware that the special case of £(r) = const was
considered originally in Bruschi et al. [20], and the in-
tegrability of the general case was noted in Konotop
et al. [21].
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FIG. 1. The evolution of the system (1) with x =1 and
v = 0 at the resonance condition &y/w = x|, where x| is the
first zero of the Bessel function Jy(x) and w = 0.06. Plotted
here is |, (1)| (see text). For all simulations presented here,
we used sufficiently long chains that the boundary effects are
negligible.



FIG. 2. Example of an off-resonance condition. The parame-
ters are the same as Fig. | except that £o/w = 0.9x}.






