
VOLUME 74, NUMBER 7 PHYSICAL REVIEW LETTERS 13 FEBRUARY 1995

Thermodynamics of the Charge-Density-Wave Transition in Blue Bronze
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Specific heat, Young's moduli, and magnetic susceptibility have been measured on pieces of a single
crystal of blue bronze (for which thermal expansivity was previously measured) at its 180 K charge-
density-wave (CDW) transition. All quantities were analyzed using a free energy appropriate for a
three-dimensional XY model. Although not all parameters can be readily interpreted, the resulting fits
permit quantification of the magnitudes of the anomalies at the phase transition in a systematic way that
does not require guessing of the background variation.

PACS numbers: 71.45.Lr, 62.65.+k, 65.40.Hq, 64.60.Fr

Quasi-one-dimensional metals are of interest because
of the large variety of phase transitions they exhibit, most
commonly charge-density-wave (CDW) transitions [1]. A
large number of measurements of thermodynamic changes
at CDW phase transitions in quasi-one-dimensional metals
have been made [2—9]. Although one-dimensional fiuctu-
ations are large and can be observed at temperatures much
above the transitions [7,10], the phase transitions mark the
onset of three-dimensional coherence of the order parame-
ter [11]. CDW phase transitions in quasi-one-dimensional
metals are expected to belong to the "3D XI'" criticality
class, where the two components of the three-dimensional
order parameter can be taken as the amplitude and phase
of the CDW [1,10]. For ideal samples, the specific heat
would exhibit a very sharp cusp (-1 —~T/T, —l~ )
[12]; in practice, defects wipe out the critical cusp [8],
leaving the milder correction to scaling cusp [13) and
mean-field-like step.

Workers have attempted to compare discontinuities in
thermodynamic response functions, such as specific heat
and elastic constants [2—6], using the Ehrenfest relations
for mean-field transitions [14], as modified for anisotropic
materials by Testardi [15,16]. Such comparisons are
complicated by the facts that (i) the anomalies can be very
sample dependent; (ii) the transitions are not very "mean-
field-like, " the critical regions are relatively broad, and
corrections to scaling behavior are non-negligible, making
it necessary to apply analysis over wide temperature
intervals; but (iii) the transition temperatures are typically
appreciable fractions of the Debye temperature, so that
the background variations of the response functions are
nontrivial and poorly known.

In this Letter, we report on measurements of the
specific heat, Young's moduli (in three crystallographic
directions), and magnetic susceptibility of the quasi-one-
dimensional metal blue bronze (K„3Mo03) near its 180 K
CDW transition [17]. All properties are measured on
pieces of the same single crystal for which the thermal ex-
pansivity had previously been measured [6]. Furthermore,

all quantities are fit as derivatives of the same free energy
expression, with remarkably similar fitting parameters, al-
lowing the backgrounds to be consistently extracted and
the discontinuities and temperature dependences of dif-
ferent properties to be unambiguously compared. This
work constitutes, by far, the most comprehensive set of
thermodynamic measurements and the most thorough test
of the Testardi and Ehrenfest relations for a quasi-one-
dimensional metal. While one parameter of the fitting
function may be unphysically large, as discussed below,
the self-consistency of the results indicates the possibility
of determining several quantities precisely enough to test
microscopic models of the phase transition.

The basic structural units of blue bronze are Mo06
octahedra which form edge-sharing clusters arranged in
chains which run along [010], the high conductivity
direction in the monoclinic unit cell [18]. The chains
are in turn bonded in sheets, parallel to [102] which are
separated by potassium ions [18], so that crystals are
easily cleaved along (201). A large crystal, =(4 mm)-'

(sample A from Ref. [6]), was cleaved using sticky tape
into small pieces for measurements of specific heat and
Young's moduli. In addition, approximately 20 mg of
powder obtained from this crystal was used to measure the
magnetic susceptibility, using a Faraday balance. We note
that the parent crystal was noticeably inhomogeneous; the
dark blue color of the K03Mo03 was marbled with a
white material, which should have no effect on anomalous
properties at T,

The specific heat, shown in Fig. 1(a), of a 2 x 2 x
0.05 mm3 piece of the crystal was measured using ac
calorimetry [19]. The results are similar to those pre-
viously reported for other crystals [9]; however, Kwok,
Gruner, and Brown reported a much larger anomaly [8].
Also shown is the thermal expansion coefficient along
[102] of the parent crystal [6].

The Young's moduli were measured on three cleaved
needles (=0.6 X 0.2 && 0.01 mm-') using a vibrating
reed technique [20]. The fundamental fiexural resonant
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A gives the ultraviolet cutoff; the maximum fluctuation
wave vector is q,„=A/gp, wliere $o is the mean-field
coherence length [23].

The singular part of the specific heat is given by

Acp = T dAS/dT = fTA—pjd g/dT (2)

o
Where S is the entropy density. To find the anomalies
in thermal expansion coefficients and elastic compliances,
AA must also be expressed as a function of the stress
components, o.;. Making the simplifying assumption that

Ap, u, and A are independent of stress [5,6], so that

then

dbA/do. ; = (BAA/BT, ) dT, /der;, (3)
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An; = —8 kA/BTBo;= f.Ao dT, /do;]d g/dT . (4)

FIG. l. (a) Specific heat and [102] thermal expansivity [6];
(b) relative changes in Young's moduli in three directions.
Open circles: measured data (50%—75% of data points are
omitted for clarity); solid curves: CAS 3D XY fits; dashed
curves: third order polynomial backgrounds of fits. (R =
8.31 J/mole K.)

and

~Y/Yo = —Yo» = Yo ~'~A/~o-, '
= fAoYp;(dT, /do. ;) ]d g/dT

fAo Yoi d Tc/do, ]dg/dT (5)

frequency

fo = 0.16(dll-') (Y /p)' ',
where Y; = 1/s, ; is the Young' modulus, s;; the elastic
compliance, p the density, d the thickness, and L the
length of the crystal [20]; relative changes in Young's
moduli are shown in Fig. 1(b) [21]. After measurement,
the orientations of the crystals were determined using
x-ray diffraction. One was oriented along [010] and a
second along [102]. The results for these two crystals
are similar to those previously obtained [4]. The larger
modulus anomaly for [102) re]lects the fact that the
lattice distortion accompanying the CDW is essentially
transverse [6]. The third crystal, denoted fh08], was only
determined to be perpendicular to b.

The free energy expression used was developed by
Chen, Albright, and Sengers (CAS) [22] and has been dis-
cussed in detail elsewhere [5,12,23]. Because, in deter-
mining the background, it makes no a priori assumptions
about the width of the critical region, the CAS approach
has the benefit that all data are treated equally. In the no-
tation of Ref. [23], the singular part of the (Gibbs) free en-

ergy density is given by hA = Apg; z (T —T,), where Ap

is a scale factor and g is a functional of the order param-
eter chosen to reproduce critical behavior as T T, and
mean-field-like behavior away from T, and to approxi-
mate corrections to scaling behavior in between. The
temperature dependence of the order parameter and g are
determined by the parameters u and A. u is a coupling
constant; 1 —0 determines the rate of convergence of a
Wegner expansion of the correction to scaling terms [22].

= —(Yo, Aced/T)(dT, /do;) + Y oh. Sd T, /do,
(5a)

Equations (4a) and (5a) are the Ehrenfest relations [14],
as generalized by Testardi for anisotropic materials [15]
and general phase transitions [16] [with the assumption of
Eq. (3)]-

Shown in Fig. 1 are fits of b c„and An[&p2] by Eqs. (2)
and (4), respectively, using the CAS free energy in the
3D XY model [10]. In each case, the fitting parameters
are T„u, A, and the magnitude of the anomaly (factors
in square brackets); cubic polynomials in T were added
as backgrounds, so the fits (about 200 points each) have
8 parameters. To include the effects of defect broaden-
ing, the CAS function was smoothed by ~0.6 K. The
parameters of the fits, which do not depend significantly
(b, u ~ 1% and AA ( 6%) on the order of the polynomial
used or amount of smoothing, are listed in Table I. (The
parameters for nt&02~ differ slightly from those previously
reported [6] due to improvements in the fitting program. )

For the Young's moduli, inclusion of both terms in
Eq. (5) allowed too much freedom in the fit; i.e. , the
relative sizes of the terms proportional to the specific heat
and entropy could be varied without significantly affecting
the goodness of fit. The observed pressure dependence is,
in fact, quite linear [24]: dT, /dp = —1.4 K/kbar while
Id T, /dp I

~ 0.01 K/kbar . We therefore assumed the
entropy term in Eq. (5) was zero; the resulting fits are
shown in Fig. 1(b), with parameters listed in Table I.

The temperature derivatives of the singular free energy
g for the extreme cases (u = 2.55, A = 0.66 and u = 2.46,
A = 0.55) are shown in Fig. 2. The small variation of
critical parameters obtained for the five fits indicates that
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TABLE I. Fitting parameters for the CAS 3D XY fits of different response functions. For
all quantities, T, = 180.4 ~ 0.4 K, where the variation presumably results from the different
thermometers used. (R = 8.31 J/mole K; p = 2.76 X 104 mole/m'. )

Quantity

ACp

An
6 Y/Y,
a Y/Y,
5Y/Yo

Direction

[102]
[102]
[hot]
[olo]

Magnitude

Ap/pRT, . = 0.035
(Ao/T, ) dT, /do. =1..7 X 10

(AOYO/T, )(dT,. /do)= .5.2 X 10
(A, Y, /T, .') (dT, /d o).' = -4.6 X 10 '
(Ao Yo/T, ) (dT, /do) . = 3.8 X 10

2.56
2.46
2.55
2.55
2.56

0.62
0.55
0.66
0.63
0.61

OJ
l—

CU
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FIG. 2. Temperature derivatives of the free energy of the
CAS 3D XY model, in arbitrary units, evaluated for u = 2.46,
A = 0.55 (solid curves) and u = 2.55, A = 0.66 (dotted curves).

the same function fits all quantities well and that the
assumption of Eq. (3) is justified. In turn, this allows the
prefactors in the Testardi and Ehrenfest relations to be
unambiguously determined, which had not previously been
possible for a phase transition in a quasi-one-dimensional
material. In particular, comparison of the magnitude of the
specific heat and thermal expansion anomalies allows us
to find dT, /do(&o2) = +2.2 K/kbar, close to the observed
pressure dependence [24]. Comparison with the Young's
modulus anomaly then gives Y~ip2] = 250 GPa; this large
value is consistent with our observed resonant frequency
and the expected strong bonding along the sheets [18],but
is larger than that previously estimated [4].

Use of the CAS free energy also allows us to address
questions of the statistical mechanics of the transition. In
the CAS 3D XY model [12,22], the transition temperature
is suppressed by 3D fIuctuations from its mean-field value
by AT, = 0.24A2T, = 16 K, comparable to the width
of the region of 3D fluctuations observed with x-ray
diffraction [10]. The mean-field-like step in specific heat
is given by [23] hc„,~

= 7 1A0/uAT, = .4 2yT„w.here

y is the electronic specific heat coefficient [7]. This
value is 3 times larger than the mean-held estimate. The
increase of the specific heat jump rejects the presence of
a pseudogap above T, [11];the values of AT, and hc„,~

should allow detailed tests of microscopic models of the
transition [25]. As mentioned above, the cutoff wave
vector is given by q „=A/go = 0.6/seo. Since, from
x-ray scattering [10], the mean-field coherence length is
estimated as being comparable to the unit cell size in

transverse directions and a few times larger along the
conducting chains, this is a reasonable value of q „.

It is not clear if a value of u ) 1 is physically
meaningful. In particular, the convergence domain of the
CAS free energy has not been checked for large u [26].
However, it may be noteworthy that very similar values
of u (2.56) and A (0.54) were obtained from fits of the
Young's modulus at the CDW transition in the quasi-one-
dimensional metal, TaSi [5]. In contrast, very different
parameters were obtained for superconducting [23] and
antiferroelectric [12] transitions.

As a further check of the CAS form of the free energy,
we consider the magnetic susceptibility, shown in Fig. 3
(inset). There is a large Curie tail at low temperature;
the susceptibility between 50 and 75 K was fitted by
a Curie-Weiss law as shown in the inset. The Curie
constant implies a magnetic impurity concentration of
-1000 ppm. Since the phase transition is sharp, we feel
that most of these impurities must be heterogeneous,
e.g. , in the white marbling material. The difference,
~ —g~„„, ~„„,shown in Fig. 3, is similar to previously
reported results for the Pauli susceptibility [7,8,27]. In
the spirit of the above analysis, if we assume that the
only parameter in AA which depends on magnetic field is
T„ then

—3 bA/dH = [Aod T, /dH ]dg/dT.

—[Ao(dT, /dH) ] d g/dT (6)

By symmetry, dT, /dH = 0, so the anomaly in suscepti-
bility is expected to resemble that in dg/dT; this is clear
in comparing Figs. 2 and 3. We used g as determined
from the CAS fit to the [102] Young's modulus, and fitted

y by g —yc„», w„„=k dg/dT + polynomial. Results
for linear and cubic polynomial backgrounds are shown
in Fig. 3. From k —= Aod2T, /dH2, we find d2T, . /dH~ =
—(1.8 ~ 0.3) && 10 K/T = p, ii/14k'&„wh—ich is
6 times smaller than the value obtained from mean-field
theory [28]. Again, this refiects the large suppression of
T, by 1D fluctuations and the formation of a pseudogap.

In conclusion, we have presented the results of mea-
surements of the specific heat, Young's modulus, and sus-
ceptibility on the same crystal of blue bronze for which
the thermal expansion had previously been measured [6].
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FIG. 3. Measured magnetic susceptibility minus the
Curie-Weiss contribution vs temperature. (50% of data
points are omitted for clarity. ) The curves are fits to
k dg/dT + background, for a cubic (solid curve) or linear
(dashed curve) background. Inset: Measured magnetic suscep-
tibility; the heavy curve shows the Curie-Weiss fit.

*Present address: Department of Physics and Astronomy,
Clemson University, Clemson, SC 29634-1911.

[1] G. Gruner, Density Waves in Solids (Addison-Wesley,
New York, 1994); P. Monceau, in Electronic Properties
of Inorganic Quasi One Dimens-ional Compounds, edited
by P. Monceau (Reidel, Dordrecht, 1985), p. 139.

[2] R. A. Craven et al. , Phys. Rev. Lett. 32, 769 (1974);

All quantities are fitted by a free energy expression devel-
oped by Chen, Albright, and Sengers for a 3D XI' model
[22], and an internally consistent set of parameters are
obtained. While the large value of 0 raises a yet unre-
solved question about the microscopic meaningfulness of
the CAS approach for CDW's, the model provides a use-
ful fitting function from which thermodynamic properties
can be unambiguously extracted for comparison with mi-
croscopic models.

We wish to thank C. P. Brock for assistance in
x-ray diffraction, and R. H. McKenzie, Z. Y. Chen, and
M. E. Itkis for helpful discussions. This research was
supported in part by the National Science Foundation,
Grants No. DMR-9300507 and No. EHR-9108764.

[3]

[4]

[8]

[91
[10]

[11]

[12]
[13]

[14]
[15]
I 16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

I 26]
[27]

[28]

M. Barmatz et al. , Solid State Commun. 15, 1299 (1974);
T. Tiedje et al. , Solid State Commun. 23, 713 (1977).
S. Tomic et al. , Solid State Commun. 38, 109 (1981);
J.W. Brill, Mol. Cryst. Liq. Cryst. Sl, 107 (1982);
Y. Wang er al. , Synth. Met. 46, 307 (1992); M. Saint-
Paul, P. Monceau, and F. Levy, Solid State Commun. 67,
581 (1988).
L. C. Bourne and A. Zettl, Solid State Commun. 60, 789
(1986); M. Saint-Paul and G. X. Tessema, Phys. Rev. B
39, 8736 (1989).
G. Mozurkewich and R. L. Jacobsen, Synth. Met. 60, 137
(1993).
M. R. Hauser, B.B. Plapp, and G. Mozurkewich, Phys.
Rev. B 43, 8105 (1991).
D. C. Johnston, Phys. Rev. Lett. 52, 2049 (1984).
R. S. Kwok, G. Gruner, and S.E. Brown, Phys. Rev. Lett.
65, 365 (1990).
M. Chung et al. , J. Phys. IV (France) 3, 247 (1993).
S. Girault, A. H. Moudden, and J.P. Pouget, Phys. Rev. B
39, 4430 (1989).
P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev.
Lett. 31, 462 (1973).
Z. Y. Chen, Phys. Rev. B 41, 9516 (1990).
J.A. Aronovitz, P. Goldbart, and G. Mozurkewich, Phys.
Rev. Lett. 64, 2799 (1990).
P. Ehrenfest, Leiden Comm. Suppl. 75b, 8 (1933).
L. R. Testardi, Phys. Rev. B 3, 95 (1971).
L. R. Testardi, Phys. Rev. B 12, 3849 (1975); see
Appendix A for a direct comparison with our results.
G. Travaglini et al. , Solid State Commun. 37, 599
(1981).
M. Ghedira et al. , J. Solid State Chem. 57, 300 (1985).
M. Chung et al. , Phys. Rev. B 48, 9256 (1993).
X.-D. Xiang, J.W. Brill, and W. L. Fuqua, Rev. Sci.
Instrum. 60, 3035 (1989).
Corrections to AY; due to (i) thermal expansion, from
Eq. (I), and (ii) taking AY; = —Yo;As;;, in Eq. (5), are
less than or comparable to the scatter in the data, and
ignored.
Z. Y. Chen, P. C. Albright, and J.V. Sengers, Phys. Rev.
A 41, 3161 (1990).
G. Mozurkewich, M. B. Salamon, and S.E. Enderhees,
Phys. Rev. B 46, 11 914 (1992).
G. Mihaly and P. Canfield, Phys. Rev. Lett. 64, 459
(1990).
H. Castella, D. Baeriswyl, and K. Maki, J. Phys. IV
(France) 3, 151 (1993); R. H. McKenzie, Phys. Rev. B
(to be published).
Z. Y. Chen (private communication).
L. F. Schneemeyer et al. , J. Solid State Chem. 54, 358
(1984).
T. Tiedje et ai. , Can. J. Phys. 53, 1593 (1975).

1185


