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Self-Organized Criticality and Synchronization in a Lattice Model of
Integrate-and-Fire Oscillators
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We introduce two coupled map lattice models with nonconservative interactions and a continuous
nonlinear driving. Depending on both the degree of conservation and the convexity of the driving
we find different behaviors, ranging from self-organized criticality, in the sense that the distribution
of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of
oscillators, with avalanches of the size of the system.

PACS numbers: 64.60.Ht, 05.90.+m, 87.10.+e

A few years ago, Bak, Tang, and Wiesenfeld [1]coined
the term self-organized criticality (SOC) to describe the
phenomenon observed in a particular cellular automaton
model, nowadays known as the sandpile model. This
system is critical in analogy with classical equilibrium
critical phenomena, where neither characteristic time nor
length scales exist. However, in SOC one deals with
dynamical nonequilibrium statistical properties, and the
system evolves naturally to the critical state without any
tuning of external parameters.

Several cellular automata models exhibiting SOC have
been reported in the literature. In the original sandpile
model of Bak, Tang, and Wiesenfeld [1], the system
is perturbed externally by a random addition of sand
grains. Once the slope between two contiguous cells
has reached a threshold value, a fixed amount of sand
is transferred to its neighbors generating a chain reaction
or avalanche. The critical state is characterized by a
power-law distribution of avalanche sizes, where the size
is the total number of toppling events. Taking this
model as a reference, different dynamical rules have been
investigated leading to a wide variety of universality
classes.

In the original noise driven models [1,2] it was shown
that conservative interaction rules were crucial to obtain
SOC [3], but more recently the interest has been focused
on systems with a continuous driving such as stick-slip
(SS) models of earthquakes [4—11] which exhibit SOC
without a conservation law. The first of these models was
studied by Feder and Feder (FF) [5];when averaging over
different samples a power-law distribution of avalanche
sizes is observed, but simple realizations exhibit a peri-
odical behavior that depends on the initial configuration.
Furthermore, the role played by nonconservation is un-
clear in terms of the redistribution of forces after a slip
process. Lately, however, it was shown that deterministi-
cally driven models with other interaction rules do exhibit
SOC for different levels of conservation [6,7,9, 11].

All these SS models have strong analogies with cer-
tain models of integrate-and-fire oscillators (IFO), widely
analyzed to study the behavior of populations of pace-

maker cells and other biological systems [12—19]. Of
particular interest to us is the resemblance with a model
discussed by Mirollo and Strogatz (MS) [17], who
considered a large assembly of IFO to show that under
certain conditions the stationary state presents perfect
synchrony among all the elements of the population.
These conditions are (i) a nonlinear convex driving
for the individual dynamics of each unit and (ii)
long-range interactions between them. With a linear
driving it is possible to have some temporal coher-
ence —entrainment —but not to ensure that the whole
assembly will be synchronized. This study highlights
the role of the driving mechanism on the final state
of the system. In the SS and MS models there is an
intrinsic dynamics —the driving —leading the elements
of the system to the threshold. When a block (os-
cillator) reaches the threshold it slips (fires), and this
produces a change in the state of its neighbors. This
process can produce further slips (firings) generating an
avalanche. During the propagation of an avalanche, the
natural dynamics is stopped and the collective behavior
is determined by some interaction rules. When the
avalanche is completed, all the elements are below the
threshold and the driving governs again the dynamics
of the system. Notice that while in SOC models one
studies the avalanche size distribution, in a model of
IFO one describes the state of the system after the end
of the interactive process, looking, for instance, at the
level of mutual entrainment between units. Essentially,
both models contain the same basic ingredients, and
from this point of view SOC and synchronization might
be considered as two sides of the same coin.

In view of the analogy between models displaying
SOC and IFO models showing complex patterns of
synchronization, the purpose of this Letter is to develop
a general framework where a diversity of macroscopic
behaviors can be observed by an appropriate choice
of the parameters that describe the dynamics of the
elementary units as well as the interaction rules among
them. Keeping this goal in mind, we are going to analyze
the effect of a nonlinear convex driving in models that
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do display SOC with a linear driving [6,20] and observe
under which conditions SOC breaks down and relaxation
oscillations show up.

We study a coupled map model on a two-dimensional
square lattice of size L X I. with open boundary con-
ditions. Each cell is characterized by two variables: a
phase variable q that increases linearly with time, and a
state variable E, which we call energy but can have differ-
ent physical interpretations. They evolve in time as [12]

dq/dr = 1, (la)

dE/dt = y(K —E), (lb)
with K = 1/(1 —e ~). Assuming E(cp = 0) = 0 and
E(p = 1) = 1, these variables are related through the
following relations [17]:

E(rp) = @[1 —e i'~], (2a)

1 E
p(E) = —ln (2b)

y K —E
The cycle period has been taken to be one without loss
of generality, and y is a measure of the convexity of
the driving. From Eqs. (1) we can see that only when

y = 0 (linear driving) the energy of the cells will increase
uniformly with time.

Once a cell becomes critical (E;, ~ E, = 1) it "fires"
and transfers energy to the four nearest neighboring cells
according to the following rules [2,6]:

E~]~~E; ]J + eE;j,

Starting with a random distribution of phases, we let
the phase of the cells evolve according to Eqs. (1), until
one of them reaches the threshold value and energy is
redistributed following (3). We have introduced a certain
amount of noise to ensure that the driving makes only
one cell to fire. If several cells reach the threshold
simultaneously the noise discriminates between them by
choosing one at random. In this way it is ensured that two
avalanches cannot overlap. Once all cells have an energy
below the threshold, the system is driven again. This
dynamics involves two time scales, one for the intrinsic
dynamics of the units and another for the interactions; in
SS models of earthquakes the first scale corresponds to
the motion of the tectonic plates and the second one to
the duration of the earthquakes; since the former is orders
of magnitude larger than the second one, we are going
to assume that the avalanches are instantaneous. This
assumption has also been made in recent studies on IFO
[17,21], but in order to discuss more realistic models it
is necessary to take into account some further ingredients,
such as the time that signals need to propagate through the
lattice or the refractory time associated with the response
of a cell, just to mention a few. Their effects are currently
under study.

We have performed numerical simulations for different
values of e and y on lattice sizes up to L = 64. In
Fig. 1 we have plotted the schematic phase diagram of

E; ~.~] ~ E; q. ~] + eE;) (3a) 0.25

E;~. ~0,
where e is the dissipative rate and e = 0.25 corresponds
to a conservative dynamics. This model differs from FF
and MS where the interaction rules are

0.20—

E;~I~ ~ E;~]~ + e,

EgjM]EgJM]+ (3b)

0.15—

E;~ ~0.
In this case the system is not conservative for any value
of e. These rules are a short-range version of the infinite-
ranged rules used in Ref. [17]. Notice that the concept
of absorption is removed from the MS model, so that
when a cell becomes critical either by its own dynamics
or by the interactive process, it always transfers energy
to (modifies the phase of) its neighbors. The energy
of a cell may be larger than E, = 1, but this property
is not inconsistent with Eqs. (2) since a given site may
only have E ) 1 when an avalanche is triggered, i.e.,
when the interaction rules control the dynamic behavior
of the system. However, there is an important difference
between the two interaction rules: In terms of IFO (3a)
implies that the phase response of an oscillator that
receives a pulse not only depends on the current phase
but also on the energy of the element that has Ared, while
for (3b) the energy of the firing cell is irrelevant.
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FIG. 1. Schematic phase diagram in terms of y (the convexity
of the driving) and e (the level of conservation) for model (3a).
The symbols correspond to the phase transitions observed in the
simulations. For the 8-C transition the error bars denote that
above them we have always found SOC while below them there
is no power-law behavior. For the A-B transition the error bars
are given by the standard deviation over ten measures. The
solid line corresponds to our analytical result (7) and the dashed
line is an exponential fit to the numerical data. The inset
displays the distribution of phases after an avalanche in region
A for a system of size L = 64 with y = 1.00 and e = 0.09.
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F [1 —p (4e)] + 2e ) 1 . (4)

A simple calculation yields

which is the relation between e and y that must be sat-
isfied for model (3b) in order to show relaxation oscilla-
tions involving all the cells. This relation has been checked
through simulations finding an excellent agreement. No-
tice that after each avalanche the cells forming the bulk
have the same phase. Therefore, the system presents a
macroscopic synchronization among almost all the ele-
ments of the lattice.

Now, let us consider rule (3a) which gives SOC for
a linear driving. The main difference with respect to the
above situation is that we have to replace e by an effective
value e, since the energy of a given site can be larger
than 1 when the avalanche propagates through the lattice.
Within a mean-field approximation we will assume that
this energy is the same for each cell. For this model,
when the avalanche has finished, the seed has a phase
p(4e), and to fire again it has to increment it by an amount
1 —p(4e). Since its neighbors are at y(3e), the condition

model (3a) in terms of these parameters. Three regions
with a clear different macroscopic behavior after 3 & 10
avalanches are observed. The features of each region are
discussed in the next paragraphs.

In region A there is only one type of avalanche that
sweeps the whole system when it has reached the stationary
state. The avalanche starts at a given cell and propagates
forming a diamond-shaped front of firing cells due to
the underlying square lattice structure. Each site fires
exactly once, and when the avalanche is over the driving
acts until a cell fires again. This cell (seed) is always
the same. Based on the structure of the front we can
describe analytically this repetitive situation. Once the
seed has fired it gets four firings from its neighbors and
does not fire again. Its nearest neighbors get one firing
from the seed, then fire, and then receive three firings
from their neighbors. In this way, all the cells get a
fixed number of firings (before and after reaching the
threshold) which only depends on their position on the
lattice. Once the avalanche is over, the system has a
well-defined distribution of energies which depends on the
interaction rules: for (3b) the seed is at 4e, the cells which
form the vertices of the front are at 3e, the boundaries
are at e, the corners have zero energy, and the remaining
cells (the bulk) are at 2e. Now, all the cells increase
their respective phases uniformly, the seed being the one
that reaches the threshold first. The avalanche must be
able to reach the zero energy cells on the corners and
enable them to fire. Thus the energy corresponding to
a phase increment of 1 —p(4e) plus the energy of two
firings corning from their neighbors must be larger than
the threshold, i.e.,

to repeat permanently this situation is

4e = 4e (F [q (3e) + 1
—q&(4e)] + e) . (6)

This equality, in addition to Eq. (5) (replacing e by e),
gives the following relationship between e and y.

1
E ~ —4K —52K + 164 —(K + 6) . (7)16—

When this condition is fulfilled, only relaxation oscilla-
tions of the size of the system can survive in the station-
ary state. The curve corresponding to the equality has
been plotted in Fig. 1 (solid line) and has been corrobo-
rated through simulations (circles). Each symbol is an
average over ten different random initial distributions of
phases. The inset in Fig. 1 is an example of the histogram
of phases after an avalanche. The height of the peak at
p(2e) scales as L~, the other two at p(e) and at p(3e)
scale as I, and finally there is a finite number of cells that
have zero phase and p(4e) whose height is negligible in
this plot.

Thus we have a coupled map lattice model that exhibits
SOC when it is driven linearly and relaxation oscillations
when the nonlinear driving is sufficiently important. Now
we focus on the intermediate behavior (region B in

Fig. 1). Starting in the region with a macroscopic degree
of synchronization we fix y and increase e. Slightly
above the curve given by Eq. (7) an avalanche sweeping
all of the lattice cannot repeat any more since the next one
will be unable to reach some of the cells in the boundaries,
and these cells will be the starting point of future
avalanches. This fact gives rise to a periodic behavior
with a discrete distribution of a few avalanche sizes. This
is indeed what we have observed in the simulations; only
some values of avalanche sizes are present and those are
very sensitive to the initial random configuration. By
increasing e the distribution of avalanche sizes, D(s),
varies from the discrete distribution to a continuous one
with some characteristic lengths which can be identified
by the peaks in Fig. 2; the peaks in D(s) scale with
different powers of L and a finite-size scaling is not
possible in this situation. Furthermore, this stationary
distribution does not depend on the initial conditions.

For larger values of e (region C of Fig. 1), close to
the conservation line, the peaks disappear and we get a
power-law decay with an exponential cutoff. In this case
the distribution D(s), for different values of L, can be
fitted into a single curve by a proper finite-size scaling
(see Fig. 3), which is the hallmark of SOC. However, we
have to stress that for large values of y the power-law
behavior remains, but it is followed by a peak before the
exponential cutoff. Nevertheless, the whole distribution
of avalanche sizes still presents a good finite-size scaling.
Another point to remark is that the exponents of the
finite-size scaling (n and P), and hence the slope of
D(s) on a log-log scale, are continuous functions of y
and e, thus we can conclude that the nonlinear driving
gives rise to a broader spectrum of exponents than that
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choice of the parameters governing the dynamics of the
elementary units and the interaction rules between cells.
Based on the spatial structure that an avalanche sweeping
the whole lattice has, we have found an analytical relation
between the convexity of the driving and the level of
conservation in the interaction rules that ensures that
such an avalanche will repeat continuously. This is the
condition that gives rise to relaxation oscillations.

The authors are indebted to K. Christensen for very
fruitful discussions and for a critical reading of the
manuscript. This work has been supported by CICyT of
the Spanish Government, Grant No. PB92-0863.
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FIG. 2. Distribution of avalanche sizes in region B.

studied in the linear case [6]. We have identified the
transition from regions B to C (squares in Fig. 1) by
fixing y and increasing e up to the appearance of a finite-
size sealing. The dashed line is an exponential fit of the
numerical results that we extrapolate to the linear driving
case (y = 0) and for large values of the convexity of the
driving. The extrapolation to the linear driving gives a
value of e = 0.16 below which there would be no SOC,
which is in agreement with recent results by Grassberger
[11]on very large lattices.

In summary, we have studied two coupled map lattice
models where different behaviors, ranging from a power
law decay of the distribution of avalanche sizes and
finite-size scaling, characteristics of SOC, to relaxation
oscillations with a macroscopic degree of synchronization,
ean be observed. This is achieved by an appropriate
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FEG. 3. Finite-size scaling ansatz of the distribution of
avalanche sizes in region C. En this case n = —2.9 ~ 0.1 and
P = 2.0 ~ 0.1.
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