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Anderson-Mott Transition as a Random-Field Problem
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The Anderson-Mott transition of disordered interacting electrons is shown to share many physical
and technical features with classical random-field systems. A renormalization group study of an order
parameter field theory for the Anderson-Mott transition shows that random-field terms appear at one-
loop order. They lead to an upper critical dimension d,+ = 6 for this model. For d ~ 6 the critical
behavior is mean-field-like. For d ~ 6 an e expansion yields exponents that coincide with those for the
random-field Ising model. Implications of these results are discussed.
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It is a well-established result that electrons in a random
potential at zero temperature undergo a metal-insulator
transition as a function of the disorder, provided that the
space dimension d ) 2 [1]. This is true for both noninter-
acting [2] and interacting [3] electrons, but the respective
transitions are quite different in nature. For the Anderson
transition of noninteracting electrons no simple order pa-
rameter (OP) description, no upper critical dimension, and
no Landau theory are known. The Anderson-Mott transi-
tion (AMT) of interacting electrons, on the other hand,
has recently been shown to be conceptually simpler than
the Anderson transition in that it allows for a simple OP
description with the density of states (DOS) at the Fermi
level as the OP. In this picture the metal (insulator), with
a nonzero (vanishing) DOS at the Fermi level, represents
the ordered (disordered) phase, respectively. This OP de-
scription leads to a finite upper critical dimension d, , and
to a Landau theory of the AMT [4].

This existence of an OP description raises important
questions about the nature of the fluctuations that drive
the AMT, and about its relation to other phase transitions
in random systems. Consider a static, spin-independent
random potential u(x) that couples to the electron density.
In a fermionic field theory this gives rise to a term in the
action [3]

dx u(x) g tit, (x)P„(x),

where tit and P are Grassmann fields and n is a Mat-
subara frequency index. Since the expectation value

(P„(x)P„(x))determines the DOS, this means that the ran-
dom potential couples to the OP for the AMT. Magnetic
transitions where a random field (RF) couples to the OP
are known to have peculiar properties: The RF fIuctua-
tions are dominant over the thermal fluctuations, which
leads to d, = 6 (rather than 4) [5], and to a violation
of hyperscaling even for d ( 6 [6]. An e expansion of
the critical exponents about d = 6 leads to the famous
"dimensional reduction" problem [7], and the critical dy-

2G
dxtr(A(x)[Q (x) —I1] + [B„Q(x)]j

HATT

+ 2H dxtr[OQ(x)] — K,[Q(x) ~ Q(x)].
4

(2)

namics have been proposed to be anomalous [8]. It is
then natural to ask whether similar phenomena are to be
expected at the AMT. Physically it is plausible that in-
teracting disordered electron systems should display RF
effects, since they have the same type of frustration that
occurs in RF magnets: The random potential favors a local
electron arrangement that conflicts with the one favored
by the electron-electron interaction.

In this Letter we show that there is indeed a close
analogy between the AMT and RF problems. Within a
renormalization group (RG) treatment of the AMT we
find that RF-type terms appear which lead to d,+ = 6.
A 6 —e expansion to first order in e leads to critical
exponents that are identical with those of the RF Ising
model, and hyperscaling is violated due to a dangerous
irrelevant variable.

Our starting point is the nonlinear o.-model descrip-
tion of interacting disordered electrons [9]. This is a
Gaussian field theory for a Hermitian matrix field Q(x)
with constraints [Q(x)]2 = 11, with ll as the unit matrix
and tr Q(x) = 0. Q is a classical field comprising two
fermionic fields. It carries two Matsubara frequency in-
dices n, m and two replica indices n, P (quenched disor-
der has been incorporated by means of the replica trick).

—o. PThe matrix elements Qnm (x) are in general spin quater-
nions, with the quaternion degrees of freedom describ-
ing the particle-hole and particle-particle channel, respec-
tively. For the sake of simplicity, in this paper we restrict
ourselves to the particle-hole spin-singlet degrees of free-
dom, although the general model can be treated in the same
way [10]. The matrix elements of Q can then be expanded

—aP —nP
as Qnm = +„=p3gnm 7 „,with 7'p t 2 3 as the quaternion ba-
sis. We write the action in the form
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Here G is a measure of the disorder, 0, is a diagonal
matrix whose elements are the Matsubara frequencies cu„
and 0 is proportional to the free electron DOS. K, ( 0 is
a repulsive electron-electron interaction coupling constant
in the particle-hole spin-singlet channel. We consider a
short-ranged model interaction for simplicity. [Q && Q]
denotes a product in frequency space which is given
explicitly in Refs. [3,9]. Notice that we have enforced
the constraint Q = ll by means of an auxiliary, or ghost,
matrix field A(x).

The correlation functions of Q determine the physical
quantities. Correlations of the Q„with nm ( 0 deter-
mine the diffusive modes which describe charge and spin
diffusion, while the DOS is determined by (Q„„)[3,9]. It
is therefore convenient to separate Q into blocks:

Q I 2(X) = 6rp 612 A n + @12(X), (4a)

„A12 (x) = B„p 612 l„, +, f12 (x), (4b)

However, for the dimensionalities considered here, d =
6 —e with e (& 1, these interactions are easily shown to
be RG irrelevant [10]. We further note that corrections to
Eq. (2), which are, e.g. , generated by the RG, can be taken
into account and also shown to be RG irrelevant near
d = 6. Physically, these results reAect the dominance
of RF fluctuations over the q fluctuations, at least near
d=6.

We next expand Q and A about their expectation
values („Q12(x)) —= B„O612N„, and („A12(x)) —= B,.O612l„„
with 1 —= (n1, n1), etc. ,

Q„P = O(nm)Q„~(x) + O(n)O( —m)q„g(x)

+ 0(—n)O(m)(q )„~(x), (3)

where 0 is the step function. We then integrate out the
massless q field. Since the action, Eq. (2), is quadratic in

q this can be done exactly. We note that this procedure
leads to long-range interactions in the Q-field theory that
result in an infinite set of relevant operators for d ( 4.

with (,@12(x)) = („$12(x)) = 0. Notice that N„ is propor-
tional to the DOS at an energy co, measured from the
Fermi surface [3]. The resulting action is quadratic in P,
but contains terms with arbitrary powers in P. If one for-
mally integrates out P, one is left with an action in terms
of the OP Q only. It can be shown that the terms of higher
than second order in P do not change the structure of the
resulting P-field theory [10]. It is therefore sufficient to
integrate out P in Gaussian approximation. This is easily
accomplished with the result

dxtr (b(x)(—rl„+ (A))@(x) + —{[(Q)4(x)] + (Q) 0 (x)) +-
G 2

dx g [htr; @(x)]

—u dxtr@ (x)—4 2H,

$2G
dx «HQ)@'(x) + @(x)(Q)4'(x)]

2 2 2
G

dxtr A @ (x) + (Q)@(x)v'2G $2G
dx tr [8@ (x)], (5a)

where we have scaled @ by a factor of $2G. tr = g„, denotes a trace over all discrete degrees of freedom, and
htr~ ~ —= g„g„p„~p denotes "half-traces" that extend only over positive and negative frequencies, respectively. A
and 8 are functions of (Q) and (A), and are given by

A((Q), (A)) = (Q)' —1 + f((A)), ~((Q), (A)) = (A)(Q) —2GH& ~ (5b)

where f((A)) is a matrix with elements „f12 = 6rp 612f„,, with

G 2mTGK, ' " 2~TGK,
1 +4, .=- [~'+;(I. + I )]' ., =o I'+ —,(I.,

+ &.,
—.+.)

(5c)

for n ~ 0, and a similar expression for n ( 0. The bare value of the coupling constant u is u = G/(df/dl) Th—e.
bare value of 5 is zero. However, a term of this structure is generated by the RG at one-loop order, and it is crucial
to include it in the action. A comparison with Refs. [5,6] shows that the half-trace terms have the characteristic replica
structure of a RF term. Since it is quadratic in @, this term contributes to the Gaussian (G) propagator. In the replica
limit we find

1 1(k).4» (p))"' = ~(k + p) ~,, 16k + m]2

4h 0 (n1n3)X $13 $24 + (—) 614 623 +
2 Qrp $12/34

k + m)2
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Here m~2 = (l~ + lq)/2 + u(N~ + N2) . It is clear that
the term proportional to 5 will increase the upper critical
dimension by 2, as it does in the case of RF magnets. We
therefore expect d,+ = 6 in the model given by Eqs. (5)
rather than d,+ = 4 which one would conclude from a
power-counting analysis of the action at zero-loop order,
i.e., without the RF term [4,11].

Equation (5a) requires some explanatory comments.
(1) (Q) and (A) are determined by the conditions (@)= 0
and (P) = 0. At zero-loop order, these two conditions
yield A((Q), (A)) = B((Q), (A)) = 0. This is the zero-

loop order equation of state that has been discussed in
Ref. [4]. It yields mean-field exponents, which constitute
the exact critical behavior for d & d,+ = 6. For d (
6, renormalizations of the equation of state change the
critical behavior. (2) In writing Eq. (5a) we have omitted
some terms that are irrelevant by power counting for d ~
4. So are the terms of O(@4) which we kept. However, as
we will see, the latter couple to the RF coupling constant
5 and therefore must be kept. We have verified that none
of the terms omitted, and no other terms generated by the
RG, couple to b, [10]. These considerations are in direct
analogy to the case of a magnet in a RF [5].

We now perform a one-loop RG analysis of the action,
Eq. (5a), using a standard momentum-shell method [12].
It is convenient to first consider the theory at criticality.
Then we can put (Q) = (A) = 0, and consider the renor-
malization of u for d = 6 —e. Since u is irrelevant for
d ) 4, we need to keep only contributions that are of or-
der g =—uA, 5 being relevant with a bare dimension of 2.
5 is not renormalized, and the 6„ term is not renormalized
either to one-loop order, so the exponent rl = O(e ). We
obtain the following flow equation for g.

dg 9
d lnb 2

= 'Eg ——g + O(g'), (7)

with b as the RG length rescaling factor. Equation (7)
possesses a fixed point g* = 2e/9 + O(e2).

We now turn to the disordered phase, i.e., the insulator
where N„=o vanishes and l„=o —= l has a nonzero value.
We thus put (Q) = 0, and renormalize the mass term (A)
or l in the action. We obtain

dl
d lnb

=2l —gl+ O(g),
and two equations that determine the renormalized equa-
tion of state,

(8)

(9a)

(9b)

N = 1 —f(l)—
P

lN = 2GHA—
2 p2+ l2'

where both N and l are to be considered as functions of
Il. If we replace g in Eq. (8) by its fixed point value g*,
we find that l scales like

l (b ) b 2[1 —e/9+ o(e )1 (10)
We next invoke the equation of state to find the relation
between l and the distance from the critical point t. To

This holds for e ~ 0. For d ) 6 one finds instead l —t

as one would expect within mean-field theory.
We can now combine Eqs. (10) and (11) to get the

correlation length exponent v to first order in e. Since
we also know g to this order, standard scaling arguments
yield all other static exponents. We find

1
v = —+ —+ O(~'), g = 0 + O(e'),

2 12

2 1 Ey=l+ —+O(e), P= ———+O(e),
6 2 6

6 =3+ e+ O(e). (12)

In order to obtain p and 6 we have used the fact that
u is dangerously irrelevant, so hyperscaling is violated
(see [6], and the discussion below), and have accordingly
replaced d by d —2 in all d-dependent scaling laws.
Notice that Eqs. (12) are identical with the corresponding
results for a RF Ising model [5,13].

We still need to determine the dynamical scaling
exponent g. For this purpose we obtain a relation between
l, N, and 0 from Eq. (9b). Expanding the r.h. s. for
small l, going to criticality, and exponentiating, we find
Nl'+'l9+~~' l —A. If we combine this with Eq. (11), in

which we substitute t —N'/~, then we find

z =3 —e/2+ O(e). (13)

Notice that z = Bp/v = yh, with yh the exponent of the
field conjugate to the OP. This was to be expected, since
our RG did not involve any frequency integrals.

Let us discuss our results. Grinstein [6] has shown that

hyperscaling is violated in RF magnets because the quartic
coupling constant is dangerously irrelevant. The same
arguments apply here. In order to completely describe
static scaling, we therefore need a third exponent, 0,
in addition to the usual two independent exponents v

and g. I9 describes the flow of u to zero, and enters
all hyperscaling relations. Consider, for instance, the
OP. Its scale dimension is d/2 —1 + rl/2, which in

the absence of dangerous irrelevant variables leads to
the scaling law P = v(d —2 + g)/2. However, since u

scales to zero like u —b ~, and since N(u 0) —I/~u,
one has instead

P = v(d —2 —0 + rl)/2. (14)

Our explicit one-loop calculation yields 0 = 2 + O(e ),
but we expect 0 = 2 to all orders in e as is the case
in the RF Ising model [14]. Now consider the density

this end, we expand the right hand side (r.h. s.) of Eq. (9a)
for small values of l ~ The l-independent contribution is
t. At linear order in d = 6 one finds a term -l, and
a term —l lnl. The prefactors of these two terms are
related, since df/dl = —G/u. Replacing g by g", we
can exponentiate and find

l —t i+ ~/] S+O(~2)
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susceptibility r)n/r) p„or the specific heat coefficient y =
limy pCv/T, or the spin susceptibility ~, . All scale
like an inverse volume times a time, so their naive
scale dimension is d —g. The violation of hyperscaling
changes this to d —0 —g. Above we have seen that g is
equal to yh = 6 P / v, and therefore,

z = (d —0 + 2 —7J)/2. (15a)

Somewhat surprisingly for a quantum phase transition, the
dynamics are not independent from the statics. This is
due to the RF fluctuations being stronger than the quan-
tum fluctuations. We thus find that all thermodynamic
susceptibilities scale like the OP, viz. ,

b (2+ 0 —d —q)/2 +(tb 1/P II b z ) (15b)

where g can stand for N, r)n/r)p„, y, or g, . 0 can stand
for either external frequency or temperature, or, in the
case of N, for the distance from the Fermi level.

RF problems contain an anomalously divergent cor-
relation function [6]. In the present case this function
describes "mesoscopic" fluctuations of the local DOS,
C(x, y) = [N(x)N(y)]„—N2, where N(x) is the (unaver-
aged) local DOS at the Fermi level, and [ . ]„is the en-
semble average. At criticality C behaves like [6] C(k ~
0) —k 2+" ~. An experimental observation of such a
strong divergence would indicate that RF features are in-
deed present at the AMT.

We now consider transport properties. The charge or
spin diffusivity D has a scale dimension of z —2. Since
no d is involved, 0 does not enter, and we have

D(t, 0) = b' ' D(tb'/", Ab') (16)

s = v(d —2 —8). (17b)

In more general models rIn/Bp, might have a noncritical
background contribution. In that case o. will scale like
the diffusivity, leading to

s = v(z —2) = —(d —2 —0 —rI). (17c)
2

In either case, Wegner scaling [i.e., s = v(d —2) [15]],
which in previous work in d = 2 + e had been found to
hold for the AMT as well as for the Anderson transition
[3], is violated. This removes the requirement s ~ 2(d—
2)/d, which follows from Wegner scaling combined with
the result of Ref. [16], and has led to severe problems
with the interpretation of certain experiments [3].

One is also interested in the scaling behavior of the
conductivity o. = Drin/Bp, The beha. vior of o. depends
on whether or not Bn/Bphas an, analytic background
contribution in addition to the critical contribution given
by Eq. (15b). Reference [4] has argued that for the
present model it does not. This yields

(17a)

The conductivity exponent s is then

Finally, we note that our results imply that all of the
complications (most of them not quite understood) that
are known to occur in the RF magnet problem should be
expected for the AMT as well. For instance, although
0 = 2 to all orders in perturbation theory, this almost
certainly changes due to nonperturbative effects [7]. d =
4 is most likely some sort of a critical dimension. Finally,
the non-power-law dynamical critical behavior that has
been proposed for RF magnets [8] should be expected to
occur at the AMT as well, giving the AMT some aspects
of a glass transition, despite the conventional power law
scaling encountered in perturbation theory.
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