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We use the semiclassical approach combined with the scaling results or the diffusion coefficient to
consider the two-level correlation function R(e) for a disordered electron system in the crossover region,
characterized by the appearance of a macroscopic correlation or localization length, £, that diverges at
the metal-insulator transition. We show new critical statistics, characterized by a nontrivial asymptotic
behavior of R(e), to emerge on both sides of the transition at higher energies, and to expand to all
energies larger than mean level spacing when £ exceeds the system size.
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Single-electron spectra in disordered metals are gov-
erned [1-3] by the universal Wigner-Dyson (WD) statis-
tics [4] which are applicable to a large variety of different
quantum systems. The principal conjecture is that spectra
of complicated systems are statistically equivalent to the
eigenvalues of the random matrix Hamiltonians [5] con-
strained due to the presence of some general symmetries.
The main feature of the WD statistics is the level repul-
sion to all energy scales. For a disordered system, it is
due to the electronic eigenstates being extended.

With the increase of disorder, the system undergoes
the Anderson metal-insulator transition [6]. At the other
side of the transition, in the insulating phase, there is
no correlation between the energy levels of the localized
states, and the spectral statistics prove to be Poisson.

As it has become clear recently, there should exist the
third universal level statistics, applicable exactly at the
transition point. Its existence has been first asserted by
Shklovskii er al. [7], who have suggested that the nearest-
level probability distribution, P(e), was a universal hybrid
of the WD one at small & and the Poisson one at
large . Systematic analytical studies of the universal
critical statistics have been started in Ref. [8]. Namely,
the two-level correlation function has been studied in
the framework of the diagrammatic approach and the
scaling hypothesis, and found to be drastically different
from both known universal statistics. In contrast to the
Poisson statistics, the long-range level correlations are still
present, but they are different from the WD ones. The
mapping of the analytical results of Ref. [8] onto the one-
dimensional plasma model with the power-law interaction
[9] illustrated the presence of the level repulsion at large
energies. It shows itself in P(g) having the large energy
asymptotic behavior intermediate between Gaussian for
the WD statistics and exponential for the Poisson ones
[9], rather than being just Poisson as in Ref. [7].
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All three universal statistics are exactly applicable in
the thermodynamic limit, Ly — . The critical statistics
are applicable within an energy band with a fixed (but
arbitrarily large) number of the levels, centered exactly at
the mobility edge, 9 = &., while the WD and Poisson
statistics are applicable for energy bands with gy > &,
(the metallic region) and gy < &, (the insulating region),
respectively. However, when the sample size L, is finite,
there is a smooth crossover between the metallic and the
insulating phase. In this Letter, we present the analytical
description of an appropriate crossover between the WD
and Poisson statistics.

The crossover region is characterized by the appear-
ance, on approaching the Anderson transition, of a new
macroscopic scale, &, which is the correlation or localiza-
tion length at the metallic or insulating side of the transi-
tion, respectively. It diverges at the mobility edge as [6]

&= Coll — go/gcl™, (1)

where €y is some microscopic length (that can be of
the order of the elastic scattering length, € = vp7), go
is the conductance at the scale €,, g. is its critical
value, and v is the critical exponent that depends on the
dimensionality d and the universality class. We will show
the new critical statistics to emerge at large energies in
the crossover region, when €y < ¢ < Lo, and to become
universal and applicable to all energies [10] € > A (with
A being the mean level spacing) near the transition, when
f = Lyg.

Calculations in the crossover region may be performed
rigorously within the diagrammatic approach, similar to
that used at the mobility edge [8]. In this Letter we
will use instead a simplified description based on a more
intuitive and illuminating way of treating the spectral
correlations developed recently by Argaman, Imry, and
Smilansky [11] within the semiclassical approach.
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We consider the two-level correlation function (TLCF),

o= ol e D) g

Here p(E) is the electron density of states at the energy
E for a particular realization of disorder, (---) stand for
averaging over all the realizations, p = (p(E)), and A =
1/pL§. The spectral form factor is defined as

K(t) = f foﬁ R(g)e io/% (3)

A transparent semiclassical expression for it, based on
the Gutzwiller trace formula [12], has been obtained
by Berry [13]. Combining Berry’s expression with a
generalized Hannay and Ozorio de Almeida’s sum rule
[14], Argaman, Imry, and Smilansky [11] have shown that

2[t|A
K(t) = mp(t), “4)

where B8 = 1,2, or 4 is for the Dyson unitary, orthogo-
nal, and symplectic ensembles, respectively, p(z) is the
averaged classical probability density to perform periodic
motion of period ¢ at a given energy [15]. It is different
from the averaged classical return probability for a diffus-
ing electron (which is contributed to by any path returning
to the point of origin, including those with mismatching
initial and final momenta) simply by a constant factor.

One identifies two opposite time scales: ergodic, re-
quired for the diffusion motion to fill the entire phase
space, t > Tey = L3/D, and diffusive, t < Terg, With D
being the diffusion coefficient. (We involve here neither
ballistic, ¢t =< 7, nor quantum, ¢ = % /A, regimes.) They
correspond to the energy scales s << g and s = g, respec-
tively, where ¢ = E./A = fpDL{ * is the conductance
in units of e?/#, and E, = #/7e, is the Thouless energy.

Efetov has shown [2] the statistics in the ergodic regime
to be the same as in the Wigner-Dyson random matrix
theory [5]. There is no dependence either on 4 or on D,
as only the spatially homogeneous diffusion mode (i.e.,
the ¢ = 0 Fourier component of the diffusion propagator)
contributes to the correlation function. It corresponds
to the saturation of the probability density [11,13], in
Eq. (4), p(r) = const. Then K(¢) o ¢ results in Rerg(s) ~
1/s2, and thus in a logarithmic spectral rigidity [16].

At the shorter times, ¢ < 7., the probability distribu-
tion of a diffusing electron is a standard Gaussian:

o 1 _(r - r0)2
P = G poyr exP[ 4D1 } ®

The return probability p(z) is obtained by setting r = rg.
Substituting it into Eq. (4), one obtains in the diffusive
regime [11,15]

24 (1-dr
Qmh)2Bp(4mD)d/?

Performing the Fourier transform, one reproduces the
diagrammatic result of Altshuler and Shklovskii [3]:

K(t) = (6)

Rait(s) = Cag~ 4257 274/D @)

where C, is a positive constant for d > 2, C; ~ 1. Al-
though Rg;f(s) is not universal, it depends only on the con-
ductance g and the dimensionality d so that the diffusive
regime is governed by the one-parameter scaling. Note
that it corresponds to the levels attraction [17].

We can still use such a semiclassical approach to
describe the spectral statistics in the crossover region
and even at the mobility edge. The trick is to substitute
the diffusion constant in Eq. (6) by the scale-dependent
diffusion coefficient known from the scaling theory of
localization [6].

In the crossover region, €y < ¢ < Ly, the natural
energy scale related to &, Eq. (1), is

S @)"

se-sa= (2 ®
that is the mean level spacing within a correlation volume.
It is known from the scaling theory of localization [6]
that at the scale L = ¢ the conductance shows Ohmic
behavior, g = L% 7%, with o = g.£274. The electron
propagation at this scale remains diffusive, with the scale-
independent diffusion constant

De = g = ii(%)ﬂ’) - (%)HD’ L5

The corresponding time scale is given by t = ¢2/Dy =
h/gcAe ~ h/Ag, as g ~ 1 for d = 3. At this time scale,
the TLCEF is still given by Eq. (7) as the rescaling of D is
absorbed by an appropriate rescaling of g.

Totally new statistics emerge at the larger energies [10];
in the critical regime,

s= AN o1 =h/A;, (10)

corresponding to the diffusion at the scale A < ¢. In this
regime, the conductance is almost scale independent and
the diffusion is anomalous, with the coefficient given by

ger(A)
fpAd=2"
To the first approximation, g.(A) = g., and the time
dependence of the anomalous diffusion may be found by
combining Eq. (11) and A? = D, (A)t which leads to the
well-known [18] result

D (t) = Do(t) = (g./hp)*/dt 1724, (12)

Substituting this into Eq. (6), we find the form factor to
be time independent that results in

Ro(s) =0, s= Af/A (13)

Such an absence of the correlations in the critical regime
of Eq. (10) results from using the self-consistent approxi-
mation (12). For A ~ Ly < &, it corresponds to the ab-
sence of correlations at the mobility edge found in the
same approximation diagrammatically [8]. [To prove the
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diagrammatic cancellation, it was necessary to use not
only the scaling relations (12) but also the causality re-
quirements which are quite subtle in the diagrammatic
technique but automatically taken into account in the
present formalism.] It means that the self-consistent ap-
proach is insufficient to describe the spectral statistics in
the critical regime. One must find D, (A), Eq. (11), more
accurately, allowing for the scaling dependence of g..(A).
The standard scaling equation for the conductance,
linearized near the critical point g = g, has the form [6]
ding _ 1g~ 8 (14)
din A v g
Integrating this on the metallic side with the initial
condition g(A = {;) = go, one obtains in the critical
regime

ga(A) = gc[1 + (A/EV"], A< &E =Ly, (15

with ¢ defined by Eq. (1). It yields, after substituting into
Eq. (11), an additional time dependence of the diffusion
coefficient, on top of that in Eq. (12),

Dei(t) = Do(D[1 + (gctAg/R)/], (16)

thus leading to the time-dependent form factor,

A ZA§ l/vd
Kcr“):m[l (5] o

where « is a numerical coefficient of order 1. This time
dependence leads to the following result for the TLCF in
the critical regime of Eq. (10):

A 1/vd 1 1+1/vd
Re) = —ass(E) () . a®

with Ayz being a numerical coefficient depending only
on the dimensionality and the universality class. There-
fore, there are three regimes in the crossover region: er-
godic for 1 = 7, (including the quantum times, r = #/A)
where statistics are Wigner-Dyson, diffusive for 7¢, =
t = h/A; where statistics are the same as in the non-
ergodic regime in metals, Eq. (7), and critical, Eq. (10),
where the new statistics emerge [19] described by the
TLCF (18). When ¢ increases in approaching the tran-
sition, Eq. (1), the critical region (10) is expanding (see
Fig. 1). Finally, at ¢ = L, both A; and E, become of
the order of A, so that the WD regime shrinks to the
quantum limit (s < 1 < ¢ > #/A), the diffusive regime
disappears entirely, and the critical regime expands to the
whole [10] region @ = A (Fig. 1). There the TLCF be-
comes completely universal:

Aup B 1

e y=1—;—i—. (19)
This expression does not change with a further increase
of &; as for & > Ly diffusion in the whole sample is
anomalous and qualitatively the same as for & ~ L.
Equation (19) coincides with that obtained directly at the
mobility edge [8] within the diagrammatic approach.

RyvEe(s) = —
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FIG. 1. Schematic phase diagram for the statistics in the
crossover region from the metal (where the correlation length
¢ < {€,) to the mobility edge (the dotted line, ¢ = L) to the
insulator (where the localization length ¢ < €,). Rescaled WD
regime is reduced to the WD regime at ¢ = L, and to the
Poisson regime at ¢/L, — 0, see Eq. (21). Here s, = #/7A
and Sp = SF/A.

In the above procedure, it seemed to be straightforward
to estimate the numerical coefficient « in Eq. (17), and
thus Ayz in Eq. (18). However, we could find neither
its value, nor even its sign, as this procedure was rather
oversimplified. There are two reasons for this. First, the
semiclassical expression (4) has been shown in Ref. [11]
to be equivalent to the two-diffusion (and two-Cooperon)
diagrams of Ref. [3]. However, at the mobility edge and
thus also in the crossover region, there are infinitely many
relevant diagrams. All of them have been proved to give
parametrically the same contributions at the mobility edge
[8]. Then, to get a parametrically correct answer it is
sufficient to consider just the simplest typical contribution
that can be described in the semiclassical language of
Eq. (4). Second, we used the Gaussian form, Eq. (5), of
the probability distribution P(r,t), albeit with the time-
dependent diffusion coefficient D(r). In fact, in the region
of anomalous diffusion, an exact expression for P is not
known. It remains causal, however. This, together with
the scaling representation of its Fourier transform at the
mobility edge, P(g,e) « [F(qé,Ac/E)g? — ie]™" [with
A, ~ (pe)~'/? being a typical diffusion length during
the time % /e and F being an arbitrary scaling function],
allowed us to prove [8] that the TLCF, Eq. (19), remains
unchanged, except for the numerical coefficient. Such
a proof that involves all possible diagrams is extended
straightforwardly to the crossover region, as will be
published elsewhere.

Finally, let us describe the statistics in the crossover re-
gion, €y K ¢ =< L, on the insulating side of the transition,
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where ¢ is the localization length. The level correlations
are only due to the states confined to the same localization
volume. The TLCF is obtained then as a superposition of
independent contributions R; from each volume £9:

A A
Rms(s) - 5(5) + A§ R5(5A§>,
where the & (s) function describes the self-correlation of the
levels.

At smaller energies, € < A;, the argument of R; is
smaller than 1, so that it should be qualitatively the
same as the Wigner-Dyson TLCF which, in turn, becomes
almost a constant for s << 1. Thus, we obtain in the
region e K Ag

(20)

A A A

Rms(s) - 8(3) + A§ RWD(-s Ag) - S(S) A,f .
The regular part is small as only the small fractions of
the levels, (¢§/Lo)? = A/Ag, are correlated. The Poisson
statistics emerge in the thermodynamic limit, where this
regular tail vanishes.

At larger energies we arrive at the critical regime of
Eq. (10), where the scaling relations differ from those on
the metallic side, Eqgs. (15) and (16), only by the sign
of the ¢ dependent corrections. Thus, the TLCF on the
insulating side may differ from that on the metallic side,
Eq. (18), only by a numerical coefficient. Although this
coefficient is unknown, as explained above, it should be
equal to that in Eq. (19). Indeed, there is no distinction
between metal and insulator at the critical point where
A = A;, and Eq. (20) should coincide for s > 1 with
Eq. (19), obtained at the mobility edge. Then one should
substitute Ryg for R into Eq. (20), which then becomes
identical to Eq. (18), obtained in the critical regime (10)
on the metallic side. So, the critical statistics, universal at
the mobility edge, are equally applicable on both sides of
the metal-insulator transition in the crossover region.
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