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Novel Magnetic Properties of Carbon Nanotubes
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A magnetic field is found to have strong effects on the electronic structure and bulk properties of
carbon nanotubes. A field-induced metal-insulator transition is predicted for all pure nanotubes. In a
weak field, nanotubes exhibit both large diamagnetic and paramagnetic responses depending on the field
direction, the Fermi energy, the helicity, and the nanotube radius. Universal scalings are found in the
susceptibility as functions of the Fermi energy, the temperature, and the size of nanotubes. Comparison
with recent experiments are discussed.

PACS numbers: 61.46.+w, 36.40.—c

The exciting discovery of carbon nanotubes [1] stimu-
lated a large number of theoretical studies on their elec-
tronic properties. Both the tight-binding [2,3] and first
principles calculations [4] predict that nanotubes can be
either metallic or semiconducting depending on their he-
licity and size. Several recent experiments found some
unusual properties. Giant magnetoresistance and indi-
cations of a field-induced metal-insulator transition are
found in transport measurements [5]. Large diamagnetic
susceptibilities are observed for a magnetic field both per-
pendicular to and parallel to the tube axis [6,7].

The magnetic properties of nanotubes were calculated
by Ajiki and Ando [8] using the k ~ p perturbation
method. However, they found that the susceptibility g&
(for the field H perpendicular to the tube axis z) is
3 orders of magnitude larger than ~~~ (H ~( z). This
result disagrees with experiments, where it is found
that the two are comparable [6]. The k ~ p calculation
is valid only if the Fermi energy is at the center of
the hand (half filling), and it only provides information
about the band structure near the Fermi energy. For
a magnetic field along the tube axis, several groups
studied magnetoplasmons and persistent currents [9]. In
these calculations, a free electron model on a continuous
cylinder surface was used. Thus, the sensitive dependence
of the band structure on the nanotube geometry was not
included, and the calculated magnetic susceptibility was
found to be independent of the helicity [9]. Because the
orbital magnetism depends on the total band energy, it is
clear that realistic calculations should include the lattice
structure and the complete ~ band.

In this Letter we report the results of such a calculation
using the tight-binding model and the London approxi-
mation. Several novel magnetic properties are found: (1)
A magnetic-field-induced metal-insulator transition is pre-
dicted for all pure nanotubes, the transition depends on
the helicity, the radius R, and the magnetic field direc-
tion. (2) The weak-field magnetic susceptibility is large
and increases linearly with the nanotube radius R; it can
be either diamagnetic or paramagnetic and is sensitive
to the Fermi energy eF. (3) For each nanotube there
exists a unique energy scale Ao, the scaled susceptibil-

ity g/R is found to be a universal function of EF/Ao
and k&T/Ao. (4) ~g~ decreases with increasing tempera-
ture. (5) For typical nanotuhes of radius R —10
g ——300 && 10 cgs/mole at low temperature; it de-
creases to —150 X 10 6 cgs/mole at room temperature.
These results are in semiquantitative agreement with re-
cent experiments [6,7].

We use the single-orbital nearest-neighbor tight-
binding Hamiltonian to calculate the band structure.
A similar Hamiltonian has been used successfully for
calculating the electronic structure of fullerene-related
materials such as large fullerene molecules [10], the
solid fullerite and fullerides [11], and nanotubes [2].
Including the effect of a magnetic field in such a model
is straightforward in the London approximation. Such
an approach has been used to predict the ring current,
Knight shift, and the magnetic response of C6O and C7p
molecules [12]. Recent NMR measurements confirm
these predictions [13]. The symmetry of nanotubes was
studied by several groups [2]. We follow the elegant
approach of White et al. [3]. A nanotube is defined by
a conformal mapping of a two-dimensional (2D) strip of
the graphitic lattice onto the surface of a cylinder. This
is characterized by a 2D lattice vector L = n]aj + n2a2,
where ai, a2 are the 2D primitive vectors of the graphite
lattice and nj, n2 are integers. For example, the radius of
the tube is R = L/2~ = (J3do/27r)gni + n2 + nin2,
where do is the C-C bond length. The nanotube is
characterized by two symmetry operations: Ctv and
S(a, h). CA is a N-fold rotation around the axis, where
W is the largest common denominator of nj and n2.
The screw translation S(h, ct) represents a rotation of ct

about the axis followed by a translation of h along the
axis. The parameters h and n are determined from the
2D lattice vector I' = pjai + p2a2, where pi, p2 are
integers which satisfy the condition p2n j

—p j n2 = %
(for details see Ref. [3]). In the London approximation,
the hopping between site i and site j is modified by a
phase factor due to the presence of a magnetic field,

V;J = Vo exp[i(27r/@o) f, A(r) . dr]. Here Vo is the
nearest-neighbor hopping amplitude, A(r) is the vector
potential, and Po ——hc/e is the fiux quantum.
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For the case of a uniform magnetic field H parallel
to the tube axis z, both Cz and S(n, h) are symmetry
operations. Assuming the nearest-neighbor hopping and
one orbital per site, the Hamiltonian can be solved
analytically to give the band structure,

E~ (K) = ~Up[3 + 2 cos(6 i ) + 2 cos(62) + 2 cos(6 i + Bq)]'

n =0, 1, . . . , N —1,

6i = (pliK 2rrnp~)/N + P(ni + 2n2),

62 = (n2K 2nnp2)/N —P(n2 + 2ni),

p = 3doH/4pp.
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And for type II, defined as those with n&
—n2 =.3q ~ 1,

the band gap is
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(3)

Here, Ap is the characteristic energy associated with the
nanotube. Numerical calculations show that Ap is well
approximated by the simple formula Ap = Vpd/Ro.

From the above equations one can draw several con-
clusions: (1) In the absence of a magnetic field type I
nanotubes are metallic and type II tubes are semicon-
ducting. This agrees with previous calculations [2]. (2)
In the presence of a magnetic field, a band gap is opened
up in type I tubes. The gap increases with the field and
reaches the maximum of 3hp/2 at the half IIux quantum.
In contrast, the gap in type II tubes decreases with the
field and reaches zero at one-third of the Aux quantum.
Thus, a magnetic-field-induced metal-insulator transition
is expected for all pure nanotubes. (3) The band gap
scales inversely with the tube radius R, and linearly with
the magnetic flux threading the tube (see Fig. 1). (4)
Because of the strong magnetic field dependence of the
band structure, large magnetoresistance is expected for
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Here, ~ is the conjugate momentum of the screw trans-
lation 5(n, h). Setting H = 0 one recovers the result of
White et al. [3].

In the case of pure nanotubes, the Fermi energy is at
the center of the band, eF = 0. From Eq. (1) one finds
that, in addition to the dependence on the helicity and the
nanotube radius, the band gap 5 = 2 min(~ e„(I~)~) varies
strongly with the magnetic field. It can be shown that 5
is a simple periodic function of the fIux threading the tube,

@ = vrR2H, with a period equal to the fundamental flux
quantum @p = hc/e. As in the case of zero magnetic
field, the band gap depends on the helicity of the tube
(ni, n2). For type I tubes, defined as those with ni —nq =
3q (q an integer), the band gap is given by

vr R~H/Qp

FIG. 1. The scaled energy gap 6/kp as a function of the
scaled magnetic field 7r R2H/P p for different 0, the field
direction. R is the nanotube radius, @o = hc/e, Ap = Updo/p.
Solid lines: semiconducting tubes (ni —n2 = 3q ~ 1), 9 =
m. /2, m/3, vr/6, 0 (top down). Dashed lines: metallic tubes
(n~ —n2 = 3q), 0 = m/2, m. /3, ~/6, 0 (bottom up). For all
figures presented in this paper we use Vo = 2.6 eV, d() =
1.43 A, thus Ap = (3.7 eV)/R(A).

all carbon nanotubes. As a quantitative example, using
Vp = 2.6 eV and dp = 1.43 A, we obtain Ap = 37 meV
for a nanotube of radius R = 10 nm. Thus, a magnetic
field of 4 T can reduce the gap of the type II nanotube
from 37 meV to zero. Such a field is well within the
reach of most experiments.

For a uniform magnetic field making an arbitrary
angle 0 with the tube axis, neither C~ nor 5(n, h) are
symmetry operations. But the translation, T = [(2n~ +
n2)/N]at —[(nt + 2n2)/N]a2, along the tube axis is a
symmetry operation. Thus, one can calculate the one-
dimensional band structure numerically. We find that for
each family of nanotubes the reduced gap A(H, 0)/Ap is a
universal function of the scaled magnetic field HER /@p,
but it is no longer periodic. Shown in Fig. 1 is the field
dependence for several field directions and for both types
of nanotubes. The universal scaling relation enables one
to estimate the band gap of any nanotube in an arbitrary
magnetic field. From Fig. 1 one observes that the effect
of a magnetic field is reduced when the field direction
deviates from the tube axis. However, this does not imply
that physical properties such as the susceptibility are less
affected, as we will now discuss.

The strong field dependence of the band structure
suggests a large orbital magnetic susceptibility. There are
two contributions to the total susceptibility g: the Pauli
paramagnetic contribution ~p (due to the electron spin)
and the orbital term g„b (due to the change in the band
energy). Our calculations show that for typical nanotubes

gp is several orders of magnitude smaller than ~„b [14].
At T = 0, y (from now on refers to the orbital part only)
can be calculated from the second derivative of the free
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energy [15],

B2F(H, T)
X =

BH2 0=p

F(H, T) = —kiiT pin 1 + exp — ' ' . (4)
n(K', H) p

71&K kpT

Here, e„(a,H) is the band dispersion. It is important to
carry out the sum over the complete band as g is cal-
culated from the total energy. We find that contribution
from far below the Fermi energy is as important as that
near it. This shows that a perturbative calculation near
the Fermi energy or a free electron model will not give an
accurate result.

In the case of ideal carbon nanotubes at zero tempera-
ture, the Fermi energy is at the band center ep = 0. We
find that for H ~~ z type I nanotubes (ni —n2 = 3q) are
paramagnetic while type II nanotubes are diamagnetic. In
contrast, for H J z all nanotubes are diamagnetic (Figs. 2
and 3). In all cases, g increases linearly with the nanotube
radius R and is a sensitive function of the field direction
0. Numerically the 0 dependence is well approximated by
the function g(0) = a + b cos(20) (Fig. 2). This unusual
field direction dependence can be used to separate the or-
bital and Pauli terms in susceptibility (the Pauli term is
isotropic). It also suggests that magnetic poling is a pos-
sible method of aligning nanotubes.

Another important result we find is that y is very
sensitive to the Fermi energy, or the carrier density. In
real materials, a small change in the carrier density (hence
the Fermi energy) from the half filling is likely, this can
lead to a large change in ~. The variation of ~ with E'F

depends on a characteristic energy Ap. It is found that

~/R is a universal function of eF/hp for each family
of nanotubes. Figure 3 shows scaling functions for both
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FIG. 3. Universal scaling of g/R as functions of the scaled
Fermi energy eF/Ap. T = 0. Solid line: H J z,nl —n& =
3q. Dot-dashed line: H J z, n l

—n2 = 3q + 1. The case of
nl —n2 = 3q —1 is very similar to that of nl —n2 = 3q + 1.
y/R is in units of 10 6 cgs/mole A.

types of nanotubes in the vicinity of half filling. For
HJ z, g is diamagnetic in the vicinity of the half filling,
while for H ~~ z a small deviation from the half filling
changes the susceptibility dramatically. (Notice that for
the type II nanotubes, the Fermi energy jumps from eF =
0 to ~eF ~

) 0.5bp for a small change in the carrier density.
For a typical type I nanotube of radius R —10 nm, the
carrier density at eF = ~hp is around 1.0 ~ 25 ppm. )
For the Fermi energy far away from the band center, we
find that the susceptibility oscillates rapidly as a function
of the Fermi energy. For a fixed eF, the susceptibility
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FIG. 2. The scaled susceptibility g/R as a function of the 0.
e+ = 0, T = 0. Pluses: nl —n2 = 3. Diamonds: nl —n2 =
3q + 1. Lines are fits using the functional form a + b cos(20).
The case of n I

—n2 = 3q —1 is very similar to that of
ni —n2 = 3q + 1. g is in units of 10 cgs/mole, R is in
units of A.

FIG. 4. The universal dependence of the scaled susceptibility
~/R on the scaled temperature k&T/hp. The Fermi energy is
at eF = 0.260. Squares: H ~~ z, n, —n, = 3q. Diamonds:
H J z, n» —n2 = 3q —1. Pluses: H J z, nl —n2 = 3q.
CrOSSeS: H 2 Z, n I

—n2 = 3q —1. The CaSe Of n l
—n2 =

3q + 1 is very similar to that of n~ —n2 = 3q —1. y/R
is in units of 10 6 cgs/moleA. For a typical nanotube of
radius R = 10 nm, the unit of g in the vertical axis is
100 X 10 6 cgs/mole, the temperature unit is Ao/k~ = 430 K.
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also oscillates rapidly with the magnetic field in the high
field limit (when the flux threading the tube is greater than
the Ilux quantum). Such oscillations are similar to those
found in continuous models [9]. Results of our high field
calculations will be discussed in a separate publication.

Finally, in Fig. 4 we show the temperature dependence
of orbital susceptibility. In all cases the magnitude of
~ decreases with increasing T (In c. ontrast, the Pauli
susceptibility increases with the temperature. ) Universal
scaling is obtained if the temperature is scaled by 50. For a
typical nanotube of radius R —10 nm, 5 —37 meV, in a
perpendicular field the calculated g changes from —300 x
10 6 at low temperature to —150 X 10 cgs/mole at
room temperature.

Our calculations provide a qualitative explanation for
the unusual transport and magnetic properties observed
in recent experiments. The large magnetoresistance ob-
served in nanotube bundles [5] suggests that it is likely
due to the sensitive dependence of the band structure on
the magnetic field. If so, our calculations predict that
the magnetoresistance should be also very sensitive to the
field direction and the carrier density. The magnetic sus-
ceptibility was measured by two groups, one on randomly
oriented carbon nanotubes [7] and the other on aligned
nanotube bundles [6]. At low temperature the reported

~ ranges from —200 X 10 6 to —300 X 10 cgs/mole.
From these data and our calculations we estimate that the
typical nanotube radius in those samples is around R —7
to 10 nm, which agrees with that reported in literature. In
addition, both experiments found that ~g~ decreases sub-
stantially as the temperature increases [16], in agreement
with our calculations.

Finally we want to point out a discrepancy between our
calculations and experiments. The experiment of Wang
et a/. [6] shows that y is more diamagnetic when H ~~ z
than when H J z. Our calculations predict the reverse for
ep 0 (Fig. 3). Though it is possible to choose a eF such
that our calculations agree with experiments, such a quan-
titative comparison should wait for better experiments and
improved theoretical calculations. For example, the issue
of uniformity of nanotubes should be addressed by experi-
ments, and the fact that most nanotubes are multilayered
should be included in theoretical considerations. Further
experiments such as the doping dependence should pro-
vide important information for comparison.

In conclusion, we have shown that novel magnetic
properties are expected for carbon nanotubes. A field-
induced metal-insulator transition is predicted for all pure
nanotubes. A large magnetoresistance is expected due
to the sensitive dependence of the electronic structure
on the external magnetic field. The weak-field magnetic
susceptibility is predicted to be large and increases lin-
early with the nanotube radius. The susceptibility can
be either diamagnetic or paramagnetic, depending sensi-
tively on the helicity of the nanotube, the field direction,

and the Fermi energy. A characteristic energy 50 exists
for both metallic and semiconducting nanotubes. Uni-
versal scaling is found in g as functions of the scaled
Fermi energy eF/Ao and temperature k&T/Ao B.oth the
magnitude and the temperature dependence of the sus-
ceptibility calculated are in semiquantitative agreement
with recent experiments. Our results indicate that careful
measurements of the magnetic susceptibility can provide
an efficient probe to characterize nanotubes. The novel
and unusual magnetic properties of nanotubes may have
promising applications in areas such as the magnetoelec-
tronics and the magnetic sensors.
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