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We study the effects of a long-range repulsive interaction on the classical coarsening mechanism of
Lifshitz and Slyozov. Beginning with a Langevin description, a set of interface equations describing
both the growth and motion of droplets is derived and solved numerically. We study two regimes: in
one, the system reaches hexagonal order and the droplet distribution function becomes a delta function;
in the other, the system is disordered and polydisperse with a strong coupling between the position and
the size of the droplets.

PACS numbers: 61.20.Ja, 64.60.—i, 64.75.+g, 75.70.Kw

Ostwald ripening is the process by which droplets of
a minority phase in a binary mixture coarsen during the
late stages of phase separation. In order to maintain local
equilibrium, material from small, high curvature droplets
evaporate, diffuse through the matrix, and condense onto
the nearby large, low curvature droplets. The interfacial
free energy of the system is thereby reduced. This
mechanism was first described by Lifshitz, Slyozov, and
Wagner (LSW) [1] in the limit of zero volume fraction.
They showed that a scaling regime is reached, wherein
the mean droplet radius increases as a power law with
growth exponent of 1/3, and derived an expression for the
scaled droplet distribution function. Since their seminal
paper, there has been extensive experimental, analytical,
and numerical work on the LSW mechanism [2].

The LSW mechanism describes systems with a con-
served order parameter and attractive interactions only.
However, there is a significant class of materials char-
acterized by both short-range attractive and effective
long-range repulsive interactions (LRRI). Such systems
typically form modulated structures of a specific size
and spatial distribution. Important examples include
Langmuir monolayers [3], block-copolymer systems [4],
ferrofluids [5], and charged colloidal suspensions [6].

In this Letter, we present a general treatment of
the coarsening mechanism appropriate for systems with
LRRI. Starting from a Ginzburg-Landau free energy
description, we derive a set of equations describing both
the growth and motion of the minority phase droplets. In
most cases, the system reaches hexagonal order and the
droplet distribution function evolves from a broad, Oat
function to a delta function, as the droplets approach their
equilibrium size. However, it is possible to find steady-
state regimes characterized by polydispersity; the size of
the droplets depends on coordination number. Two such
polydisperse states are discussed: in one the system is
kinetically frozen; in the other the system evolves with
a growth exponent n ( 1/3.

We begin with the appropriate free energy functional,
written in terms of the order parameter @. It contains both
an attractive square gradient and a long-range repulsive

term [7]. In dimensionless form,

d"r 2(~4)' + f(4)

d r d r'P(r)g(Ir —r'I)@(r'),

where g(Ir —r'I) is the kernel of the LRRI of relative
strength p'. In this dimensionless form, coordinates are
expressed in terms of a characteristic length $ propor-
tional to the interface thickness. The local free energy per

t 2 I

site has a double-well structure, f(@) = —2tt 2 + 4@4,
for temperatures below the critical temperature. For def-
initeness, we have chosen to study the 2D kernel g(Ir-
r'I) = I&

—r'I ' —[(r —r') + L ] 't, appropriate for
a Langmuir monolayer of thickness L [8]. The equilib-
rium phase diagrams for fixed values of L and P' are
known: The system exhibits modulated stripe and hexag-
onal phases as a function of the mean concentration @0.

The time evolution of the system after a quench from
the high-temperature disordered phase is given by the
Langevin equation

6@(r,t)/at = V'6F/6p, (2)

where we neglect thermal noise. Numerical studies of
the Langevin equation show, that after a quench into
the hexagonal phase, a long-wavelength instability creates
a morphology of interpenetrating domains. Inside these
domains, the order parameter saturates at @b„~k = ~@,.„.
The system then undergoes a series of early-time shape
changes that leads it to a disordered, liquidlike state of
minority-phase droplets of varying sizes. During its late
stages, the system continues to evolve via the growth and
dissolution of droplets and the elimination of defects. In
most cases, a final monodisperse state of droplets with a
spatially triangular distribution is reached. We shall show
that the system can also behave as a polydisperse liquid,
with a quasiconstant concentration of defects.

Starting with the Langevin equation [9], we have used
the method of matched asymptotic expansions [10] to
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obtain a macroscopic description of interfacial dynamics.
The expansion parameter is proportional to the ratio of
the interfacial width to a typical macroscopic length, de-
termined by the curvature. To firs order, we obtain three
coupled equations. First, a quasistatic approximation for
the order parameter in the bulk, &3@/rit = 0, or equiva-
lently, |r' [pLsw + p' f d" r'g(lr r'l)@h tk(r')] = o
where p, Ls~ is the classical chemical potential, p, Ls~ =
2[ttt(r) —Pb„tk]. Second, the boundary condition
for p, Ls~ at the interface I of a droplet of radius R:
p, Lsw~q = t(d —1)o/2@„.,R), where o. is the local sur-
face tension. Third, the equation for the normal velocity
R of the interface, proportional to the discontinuity. of
p, Lsw across the interface: 2@„tR = [fl . 't7p, Lsw]t We.
rescale length and time by the dimensionless capillary
length l,. = (d —1)o./4tt„„ i.e., x = r/l, . and ~ = t/l2
The local chemical potential is p, (x) = 2@„t0(x), where
0(x) is given by

@haik + P g dd j
() j()0(x) =

sat

(3)

Here, N is the number of droplets of the system, D;
is a spherical domain of radius Rir and P is rescaled
p'. The integration of the interface equations gives a
steady-state multidroplet diffusion equation in the form
of a Poisson equation for 0(x) with a surface charge on
droplet i proportional to —R; [11,12]. In the monopole
approximation [13], the multidroplet diffusion equation
becomes

~(X)l(x —X;~=Rj LSW + Iintra + Iinter ~ (5)

whe~e ILsw = 1/R; is the LSW contribution to the chem-
ical potential, I;„,„, = p fo ddx; g(~R; —x';~) is the in-
tradomain term, and I;„„„=p p, ~, fo d"~,' g(~~, —x,'~)
is the interdomain term. We call VLs~, V;„„„and V;„I„
the resulting growth rates.

The mass balance equation is

d(vR,")/dr =— j.nd5,

where v = a/d, 5; is the surface of the ith droplet,
n is the unit vector normal to the droplet surface, and

j = —VO(x) is a mass fiux density with a purely diffusive
term and a term due to the LRRI. The evaluation of this
flux on the droplet surface 5; gives the growth law

R; ' dR;/dr = B; . (7)

Conservation of the total Aux in the system requires

1120

V'0(x) = a g B;6(x —X;),
i=1

where a = 2~~"t ~/I (d/2), X; is the center of mass of
droplet i, and 8; is the strength of the source or sink of
current for diffusion. On the surface of droplet i, 0(x) is

B; =0.
i=1

Equations (4) to (8) describe the growth of the droplets,
and in the absence of the LRRI, when applied to spherical
precipitates, they reduce to those of the LSW mechanism
with a finite volume fraction [14]. However, in systems
with a LRRI, these must. be augmented by an equation
describing the translation of droplets, since they assume
a specific spatial pattern. The integration of the interface
equations, assuming that the deformation from sphericity
is negligible [11,13], gives a Langevin equation for X;:

dX;
d7

MP yvR;
d" r,' g(~X;) + r;, ~),

(9)

where X,, = X; —XJ, r;, = r; —r,', and M/vR", is the
mobility. The motion is given by the interdomain contri-
bution, i.e., the positioning of surrounding droplets, me-
diated through the LRRI. The integration of the interface
equations gives M = 1. We treat M as a phenomenolog-
ical parameter in order to study the effects of enhancing
or hindering hexagonal order and to allow for different
modes of mass transport for different LRRI systems.

The above equations constitute a formal solution of the
LSW problem for systems with LRRI. The advantage
of this approach, over Eqs. (1) and (2), is that one can
study each of the factors in Eq. (5) independently and also
study long-time behavior with less computing time. To
solve these equations, a generalization of the numerical
technique previously described in the literature [14] was
used. The 2D system was initialized by generating a
random set of (R;) and a set of centers of mass tX;)
(without droplet overlap). Next, Eq. (4) was solved using
Eq. (5) for the set of (B;), subject to the conservation
law Eq. (8). Then Eqs. (7) and (9) were integrated
numerically using an Euler discretization scheme. This
generated a new set of (R;) and (X;), and the process
was iterated [15]. Generally, our simulations began with
Np = 500 disks, distributed either at random or in a
triangular lattice in a rectangular box which requires an
equilibrium number of droplets N, q

~ Np. We varied the
film thickness, 0.1 ~ L ~ 10, and for each L we tried
different values of P, for volume fractions 0.02 ~ @ti ~
0.40 [13]. The parameter M, which sets the relative time
scale of the triangular ordering of the droplets to the
LSW mechanism, was also varied. During the simulation,
the average radius and the droplet distribution function
were computed. The evolution of the spatial distribution
of the droplets and the processes of topological defect
annihilation were studied and analyzed using standard
Voronoi construction techniques.

The left column in Fig. 1 shows the effects of both the
spatial and size distributions of the droplets on the coarsen-
ing rates VLsw, V;„„„V;„„„,and Vr (VT = R = VLsw +
V;„,„, + V;„„,). Both VLsw and V;„„, are indePendent of
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coordinates, while V;„„,depends crucially on them. Con-
sider a broad radius distribution. VLsw describes the clas-
sical situation in absence of LRRI (P = 0), i.e. , droplets
with radii smaller than the mean radius R have negative
growth rates and shrink, while droplets with R ) R grow.
V;„,„, has the opposite behavior: droplets with R ~ R
have positive growth rates, while those with R ) R have
negative rates; this term favors a monodisperse droplet dis-

FIG. 1. Right column shows configurations for (a) a monodis-
perse system in the triangular crystalline state (L = 10, P =
0.36, Po = 0.04, M = l, r —170000); (b) a system frozen in
a polydisperse liquid state (L = 10, P = 0.08, @o = 0.40, M =
0.001, r —S44000); (c) a polydisperse coarsening system (I =
2, S, P = 0.08, Po ——0.40, M = 4, r —6000). Droplets with co-
ordination number z ~ 6 are indicated with filled disks and
those with z ) 6 with a plus sign. The crystalline configuration
has a pair of dislocations. Left column shows the growth rate
distributions V&. Thin solid line: VL&~, dashed line: V;„,„,;
dots: U;„„„;thick solid line: Ur. (a) Contributions for initial
random radii and random coordinates: V;„„„and thus also VT
produce a very disperse cloud of dots; here only their averages
are shown. (b) Contributions for the frozen configuration. (c)
Contributions for the coarsening system.

tribution. If the radii are chosen uncorrelated 1(a), U;„„„
produces a disperse cloud of points; its dispersion increases
with volume fraction or with randomness of coordinates.
Individual droplet points in the uncorrelated V;„„„distribu-
tion may have any growth rate, depending on their imme-
diate environment. For a strongly correlated system 1(b)
and 1(c), on the other hand, U;„„„produces a well-defined
curve. In both cases, the average V;„„„,like VLsw, gives a
mass flux from smaller to larger particles. A minimization
of the droplet free energy shows that if P12 ) 0 98r.r(P&&)
then the equilibrium radius R,~ is finite ("noncoarsening"
solution). The function rr(@n) originates in the interac-
tion term and is a monotonically increasing function of
@o, with &r(0) = 1. It has been computed for a dipolar
interaction by Mcconnell [16]. If the system is free to
reach hexagonal order, V;„,„., ) —(ULsw + V;„„„),and the
resulting VT leads the system to a monodisperse distribu-
tion 1(a). This behavior occurs for any mobility M ~ 0.01.
However, if the hexagonal order is hindered, for instance
by taking the limit M 0, then V;„,„,. = —(VLsw + V;„„„).
The system becomes kinetically frozen in a polydisperse
configuration 1(b). If ply ( 0.98&r(p&&), R,„~~, and
V;„,„, ( —(Vt sw + V;„„,). The system coarsens and is
polydisperse 1(c), independently of the value of M. The
tendency of U;„,„,. to produce a monodisperse distribution
and of V;„„,to produce a strong coupling between the po-
sition and size of droplets are new features absent in the
classical LSW mechanism,

The right column in Fig. 1 shows configurations for (i)
noncoarsening systems in (a) the crystalline state and (b)
a frozen polydisperse liquid state; (ii) a coarsening sys-
tem 1(c). In Fig. 1(a) the droplets evolved from an initial
state, where random coordinates and random radii pro-
duce the velocity distribution shown, to a final configura-
tion with equal radii and triangular coordinates (VT = 0),
except for a few dislocations [17]. The mechanisms of
defect annihilation and collision are as reported in a
Langevin simulation study [7]. For systems such as those
shown in l(b) the concentration of defects stays almost
constant. In the noncoarsening case, the hexagonal order
contributes to the achievement of monodispersity. Sys-
tems with slow mobilities far from the triangular configu-
ration can be stabilized with VT = 0 for a wide range of R
through the coupling between defects and the size of the
constitutive droplets. In the coarsening case 1 (c), the cou-
pling of topological disorder and polydispersity contained
in V;„„„stabilizes the system as an evolving froth [18].
This case resembles the experimental results obtained for
an amphiphilic monolayer by Seul and co-workers [18].

Figure 2(a) shows the average droplet distribution as
function of R/R, „. The delta function corresponds to
monodisperse triangular systems 1(a), the symmetric peak
to frozen systems 1(b), and the one resembling a classical
distribution corresponds to the coarsening systems 1(c).
The inset shows the normalized mean area, x, = (A, )/(A),
of z-fold coordinated droplets for 1(b) and 1(c). Fig-
ure 2(b) shows the dependence of the average radius R
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FIG. 2. Solid line: parameters of Fig. 1(a). Open squares:
parameters of Fig. 1(b). Filled circles: parameters of Fig. 1(c).
(a) Average droplet distribution function f(R/R, „) The l.eft
scale is for the delta function and the right for the spread
functions. The inset shows x as defined in the text. (b)
Average radius R„, as a function of time. Dashed line: classical
LSW result (Pp = 0.04). Curves displaced with respect to each
other for clarity.

on time. The classical LSW result has a growth exponent
n = I/3. For 1(a), the growth of R stops once the delta
function is reached. For 1(b), R is also constant, while
R„, —t' in l(c), with n = 0.29.

The magnitude of hexagonal order present in early
stages stabilizes noncoarsening systems against the LSW
mechanism. In a random radius distribution with trian-
gular coordinates (and low volume fractions), V;„„, is a
narrow band around V~ = 0, so that VT is positive for
R ( R„, and negative for R ~ R,„. For random coordi-
nates, V;„„, is very disperse and many small droplets in
the cloud have very negative VT. In a simulation with
an initial triangular configuration with random radii the fi-
nal monodisperse state has a number of droplets equal to
the initial one. If the process is repeated exactly but with
random initial coordinates, the system eliminates several
droplets before the radius distribution becomes a delta
function. In both cases, the final configuration is trian-
gular, but in the first case the resulting lattice constant
is smaller. Keeping everything the same, but varying
M, produces similar results. A large mobility sets the
hexagonal order sooner so that such systems are stabilized
sooner against the LSW mechanism and, therefore, their
final number of droplets is higher.

In summary, we studied the effects of a LRRI on the
LSW mechanism. Starting from the Langevin description,
a set of interface equations which couple growth and mo-
tion of droplets was derived. We found a noncoarsening
and a coarsening regime. In the noncoarsening regime,
the system is history dependent and sensitive to the mag-
nitude of the hexagonal order present in the early stages.
Monodispersity is aided by hexagonal order. If hexago-
nal order is hindered, the system is stabilized —through
the coupling produced by I;„„,between the positions and
sizes of droplets as a kinetically frozen polydisperse liq-
uid, where the mean radius is constant in time. In the
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