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The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be

analyzed accurately by periodic-orbit-type theories.

In nonhydrogenic atoms, the core induces pure

quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in

terms of classical orbits and their stability parameters.

Provided core-scattered waves are included

consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in
excellent agreement with quantum results. We consider whether these systems correspond to quantum

chaos.

PACS numbers: 05.45.+b, 03.65.Sq, 32.60.+i

Quantum chaos—the study of quantum systems associ-
ated with chaotic motion in the classical limit—continues
to provide an important challenge to physics. One of the
most dramatic correspondences between the quantum and
classical mechanics of nonintegrable systems is contained
in the so-called “periodic orbit expansion.” The simplest
example is the Gutzwiller trace formula which expresses
the quantum density of states (for a strongly chaotic sys-
tem) as an infinite sum over periodic orbits of the classical
system. This analysis relies on a semiclassical expansion
of the Green’s function which is supposed to be valid for
strongly chaotic systems and in the limit # — 0. In this
Letter, we show—in the specific case of nonhydrogenic
Rydberg states in a magnetic field—how the presence of
a core induces pure quantum effects beyond the standard
periodic (closed) orbit theory and how they can be suc-
cessfully incorporated into the theory.

The highly excited hydrogen atom in a strong magnetic
field has provided one of the most important case studies
of a real quantum system for which the corresponding
classical motion may be varied at will from regularity
to chaos by adjusting a single parameter. The classical
dynamics of the highly excited electron depends solely on
one parameter, the scaled energy ¢ = Ey~2/3 where y is
the magnetic field strength and E the energy. In atomic
units the motion is almost fully regular for ¢ < —0.5
and makes a gradual transition, with increasing scaled
energy, to full chaos for £ > —0.127 [1]. It is also
possible to obtain quantum spectra corresponding to the
same scaled energy, which may be compared with the
classical dynamics. In this case, however, the scaling
transformation results in an effective value of Planck’s
constant equal to y'/3 [1].

The diamagnetic spectrum of hydrogen was analyzed
quantitatively using periodic orbit theory [2] which was
able to predict the positions and amplitudes of long-
ranged modulations in the density of states. Similar
modulations in the observed photoabsorption spectrum
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have also been calculated using a theory [3—5] which
involves closed rather than periodic orbits.

Now a growing body of experimental and theoretical
evidence on spectra and wave-packet dynamics suggests
that core effects have important dynamical effects not
seen in hydrogen [6-—8]. But the semiclassical theory
routinely used to analyze experimental spectra neglects
core effects entirely and hence is appropriate only for
hydrogen [4].

Most theoretical quantum solutions of the diamagnetic
nonhydrogenic problem [6,7,9] follow a suggestion of
Clark and Taylor [10] who noted that the problem splits
into two regions: an outer region where the core is
negligible and the Hamiltonian is hydrogenic, and an
inner region where the magnetic field is negligible. In
the latter case the effect of the core is taken into account
by a set of phase shifts dependent on angular momentum
[ —the quantum defects u;.

The first calculation on nonhydrogenic atoms at
fixed scaled energies, permitting direct comparison with
the classical dynamics, showed strong core-dependent
effects [6]; additional modulations were found in Fourier-
transformed spectra of nonhydrogenic atoms and the
modulations of long-period orbits were reduced. The
nearest neighbor statistics (NNS) were displaced towards
the chaotic limit, even for low scaled energies (¢ = —0.5)
[6,11]. However, the quantum phase distributions showed
that the eigenstates remain strongly localized on torus
structures: not the signature of a true chaotic system.
But unlike the regular limit where each quantum state is
in general localized on a single torus, in this case each
state receives contributions from different periodic and
quasiperiodic trajectories.

Recently a method has been developed which enables
calculation of nonhydrogenic spectra at fixed scaled en-
ergy for very high-lying states, closer to the semiclassical
limit [7]. The additional modulations found in [6] were
identified as being combinations of periodic orbits due to
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core scattering. The fully quantal spectra presented below
have also been calculated using this method.

A classical calculation [12] with a model potential
which reproduces the quantum defects of lithium showed
that, although typical trajectories are ergodic, when out-
side the core region (for ¢ = —0.5) they remained on a
torus of hydrogen. Hence trajectories see all of phase
space by “torus hopping,” regular motion interspersed
with scattering with the core. The periodic orbits have
large Liapunov exponents, and the dynamics is extremely
unstable. However, model-potential dynamics does not
provide the true classical limit of core-scattering dynam-
ics since the multielectron core affects only the lowest
l-partial waves and so never approaches the semiclassical
regime.

The only adequate approach must allow for the break-
down of classical path methods at the core. Closed-orbit
theory [3—5] caters to this by matching a semiclassical
wave approaching along a periodic orbit with a quantum
scattered wave at the core boundary, r = r,. The method
is reviewed in [3,4] in great detail so only a very brief
outline is given here. Du and Delos obtained the analyti-
cal form for the quantum scattering wave function

Wi(r,0) = gis(r,0) + au(r,6), (1)

which arises when an electron approaches a core from
an angle 6’ and includes an outgoing and an incoming
part with amplitude N’/. The photoabsorption spectrum
results from the overlap of these scattered waves with the
initial wave produced by the photoabsorption process and
consists of an average part plus an oscillatory part of the
form

1) = 2 = Eq)

Im > N{Dgol¥’).  (2)
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Since the dipole matrix elements can be obtained from
Coulomb functions, the important parameters are the
amplitudes N/ of these scattered waves. They are deter-
mined by matching the j, to semiclassical waves associ-
ated with periodic (closed) orbits:

Do(rp, 0)A ™S = NIy, (ry, 07) . 3)

Here, j labels a closed orbit, which starts from the
nucleus at an angle 6] and returns some time later at
an angle 0}, and S/ corresponds to the action along
that orbit plus an associated phase, the Maslov index.
A’ is a semiclassical amplitude. The initial amplitude
®, is determined by the photoabsorption process and
is obtained [3] from the action of an outgoing Green’s
function on the dipole operator and the initial state.
While the explicit dependence of Eq. (3) on r, has
been indicated, it has been shown [3] that the resulting
solutions for the N/’s are independent of r;, for small r,.

After the encounter with the core, the scattered waves,
Wou, launch other semiclassical waves along the same
periodic orbits, so multiple traversals of these orbits
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modulate the spectrum too. In the case of stable orbits the
amplitudes oscillate with the number of traversals while
for unstable orbits they decay exponentially.

It was noted [4] that only in the pure Coulomb case
does du backscatter strongly into the same periodic
orbit. In the presence of a nonzero quantum defect
wém = zpéop, + z//éore. While zpéou] is strongly backwardly
focused, ¢dore redistributes amplitude, isotropically for an
! = 0 quantum defect or as cos @ for p-wave scattering.
Gao and Delos [4] investigated this process and concluded
it was negligible.

It now seems amply clear that this is not generally the
case [6—8,11]. One can estimate the amplitude of the
additional observed core-scattered peaks perturbatively
from l//gore. However, this would not allow for loss of
amplitude of the primary orbits.

Instead, we now consider that the initial outgoing wave
consists not only of ®, but in addition a coherent sum
of core-scattered waves from all other closed orbits and
their repetitions. Thus, in Eq. (3) we replace ®, with d,
where

Do(rp, 0]) = Do(ry, 0]) + D N YL (ry,0]) (@
k

and wc/ore is given by Eq. (7.14b) of Ref. [4]. The result is
a set of coupled linear equations for the N/’s; potentially,
every orbit is coupled to every other by the scattering.

We solved this problem for ¢ = —0.3 using all prim-
itive orbits (up to scaled action 6, 31 orbits in total) and
their repetitions. The solutions were obtained by iteration.
The first iteration returns the standard closed-orbit result:
N/ is proportional to A/e™i. The second brings in com-
binations of two actions A/A¥e/S’*S) The third brings
in combinations of three primitive actions—double core
scattering. And so on, until the results converge.

We find that the correction due to the pth iteration is
weighted by a prefactor y?/¢ or /7/2. Hence for small #
convergence with successive iterations is assured.

The same approach can also be used at values of &
where the hydrogenic classical motion is regular. In this
case, the core scattering is seen to be the same mechanism
as the torus hopping observed in the model-potential
calculations.

In Figs. 1(a)-1(d) we compare the results for m =
0, odd [, and y~'/3 = 60—120. Figure 1(a) shows the
Fourier-transformed spectrum of hydrogen. Figure 1(b)
shows the quantum spectrum for an atom with w,—; =
0.5 (comparable perhaps to Cs which has w,—; = 0.57).
Figure 1(c) shows the standard closed-orbit result with
mi=1 = 0.5, while Fig. 1(d) shows the new version with
the same quantum defect. One can see that, even for quite
small values of A (n = 77—154), there is a substantial
difference between hydrogen and the core-scattered case.
Each peak in the Fourier transform is associated with
a closed orbit. It appears at the action S’/ of the orbit
with an amplitude proportional to A/. The core-scattered
contributions are the peaks located at the sums S/ + S*.
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Fourier transforms of the photoexcitation spectra (from the ground state) of Rydberg atoms in a magnetic field at constant
scaled energy & = —0.3 (m = 0, odd parity states, y~'/? in the range 60—120).

(a) Quantum result for hydrogen. The peaks

appear at the actions of the closed orbits (see Table I for list). Also visible are ghost peaks (marked “G”). (b) Quantum results

for a nonhydrogenic atom with wu,~; = 0.5; core-scattered peaks appear at the sum of actions of periodic orbits.

(c¢) Standard

semiclassical calculation for the hydrogen atom, in good agreement with (a), but not with (b). (d) Our semiclassical calculation,
which goes beyond the standard closed-orbit theory by including core-scattering effects and sucessfully reproduces the quantum

nonhydrogenic spectrum.

Further we can see that the standard closed-orbit result
reproduces only the hydrogen results, while the new
version with core scattering gives excellent agreement
with the fully quantal nonhydrogenic case.

The integers in Fig. 1(a) indicate primary orbits. Ta-
ble I gives the correspondence between these integers and
the periodic orbits, following the convention of [13]. The
pairs of integers in Fig. 1(b) indicate combinations of or-
bits, the core-scattered peaks. A few peaks present in
Fig. 1(a) (indicated with a “G”) are not found even in
the new semiclassical results. They correspond to “ghost”
peaks [14], in other words, orbits which appear in the
quantum spectrum below the energy of the bifurcation at
which they are born. We have, in fact, identified a peak
corresponding to scattering between a ghost and another
“real” orbit. The triple integers indicate a peak due to
double scattering, an action corresponding to a combina-
tion of three orbits. The Fourier transforms converged
after two iterations, indicating that scattering beyond dou-
ble scattering is unimportant. However, the difference be-
tween the first and second iterations was significant.

The major disagreement between the new semiclassi-
cal and the quantum results is in the peak for the third
harmonic of Vll. However, there is already a compara-
tively similar discrepancy for this peak between Figs. 1(a)
and 1(c), the hydrogenic case. Such discrepancies occur
when the semiclassical amplitude is near a singularity, for
example, when a winding number is nearly rational. In
that case the semiclassical result overestimates the quan-
tum amplitude—the discrepancy increases for larger /7.
Nevertheless, the new semiclassical results agree with the
quantum in predicting a reduction of about 30% in ampli-
tude of this peak due to core scattering. Very strong re-
ductions in amplitudes of higher harmonics were seen in
[6], which looked at very low-lying levels (n = 10—30)

where comparison with semiclassical results is more diffi-
cult.

Similarly, in Fig. 2 we compare the y /3 = 60—120
range, this time for m = 1. Here photoabsorption ex-
cites, predominantly, states localized in the plane perpen-
dicular to the magnetic field. Consequently, the Fourier
transforms are dominated by the R; orbit and its har-
monics, corresponding to periodic motion in a straight
line perpendicular to the magnetic field. In the quan-
tum hydrogenic [Fig. 2(a)] and also the standard closed
orbit [Fig. 2(c)] spectrum the intensity of the harmon-
ics alternates, with the even-numbered harmonics being
stronger than the odd-numbered harmonics. At a nearby
scaled energy ¢ = —0.316 the winding number v of R,
approaches a rational value, v = 3/2, and hence for even
values of the number of traversals, k, the semiclassical
amplitude A « |sin(7rkv)|~/? diverges. In addition, the
even-k peaks include contributions from the Rj orbit born
at e = —0.32.

Once again we see that the new semiclassical results
[Fig. 2(d)] are in much closer agreement with the quan-
tum results [Fig. 2(b)] than the standard closed-orbit the-
ory [Fig. 2(c)]. The additional core-scattered peaks are
well reproduced. So are the amplitudes of the primary
peaks which, particularly for higher scaled action, are sig-
nificantly affected. The odd harmonics gain in amplitude,
while some even ones lose amplitude. This we interpret
as due to scattering between sz and R; which results in
new peaks coincident with R; and Rs. Ultimately, for
high scaled action all strong harmonics have been lost.
In [6] this was found to be a very strong effect indeed.
We also found the reduction of amplitude of high har-
monics to be more pronounced for y~!/3 = 30—60 con-
sistent with the Z dependence of core scattering. As in
the m = O case, three iterations (terms up to a factor of %
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TABLE I. Correspondence between the integers labeling the
peaks in Fig. 1 and the periodic orbits described following the
nomenclature of [13].

1 2 3 4 5 6 7

v Vi R, v, Vi v, R;

smaller than the standard periodic orbit form) were needed
for convergence.

Loss of amplitude, which we find here for the higher
harmonics, is characteristic of unstable motion. For true
unstable motion the Liapunov exponents are positive pro-
ducing semiclassical amplitudes which decay exponen-
tially with the number of traversals. We have also found
that these core-scattering systems can exhibit NNS statis-
tics at the Wigner limit. The classical motion obtained

from model-potential simulations is certainly chaotic. So

may one conclude—even at low scaled energies where
the hydrogenic dynamics is regular—that nonhydrogenic
atoms represent another instance of quantum chaos.
Although the quantum modulations lose amplitude
through core scattering, they do not do so exponentially.
The results do not seem consistent with the large Lia-
punov exponents obtained for the closed orbits using the
model potential, although recent calculations [15] suggest
that clusters of new unstable orbits can explain some of
the features observed in the quantum spectrum. In addi-
tion, the phase-space distributions are still concentrated on
regular structures, though clearly they see much more of

(a) Hydrog';en

(b) Non-hydrogenic
Quantum

1 N | 4 | + 1 ' |
T ¥ T T T T

(c) Closed orbit

% 4 H ’L T vl
(d) Core-scattering T

Semiclassical

IFourier Transform|
(arbitrary units)

0 1 2 3 4 5 6
Scaled action

FIG. 2. Same as Fig. 1, but for m = 1 states. See text for

discussion.
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phase space than a truly regular system in the regime of
torus quantization. Finally, the core-scattering contribu-
tions decay with a higher power of 7 than the hydrogenic
motion.

However, we found here that the core-scattered terms
make a very slow exit from the spectrum. We have
shown that throughout much of the observed spectrum for
e = —0.3 (we have considered n up to 300) the effects
for an atom like Cs or Sr remain strong. The long-range
modulations in the spectrum of nonhydrogenic atoms
in magnetic fields will tend to the hydrogenic ones in
the semiclassical (A — 0) limit; the short-range behavior
(e.g., NNS) is unclear but remains near the Wigner limit
for the range considered here. But rather than invoking
chaos, these features may be understood, even in the
hydrogenic regular regime, in terms of regular motion
plus quantum scattering.
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