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Phase-Space Exploration in Nuclear Giant Resonance Decay
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The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole
resonances in “°Ca is analyzed. The study is based on the time dependence of the survival probability
and of the spectrum of generalized entropies evaluated in the space of one-particle—one-hole (1p-1h) and
2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding
to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In
the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains
largely localized, even though it penetrates the whole available phase space.

PACS numbers: 24.30.Cz, 24.60.1.z

Collective nuclear excitations occur on dynamical time
scales which are short compared to those of the compound
nucleus and, therefore, probe simple configurations. In
response to an external perturbation a collective mode is
initially formed as a nonstationary state which occupies
a small fraction of the available phase space. The
subsequent decay, on the other hand, involves much
longer time scales and explores more complex nuclear
configurations. The specific characteristics of this process
may, of course, depend on the energy distribution of the
initial state, its multipolarity, its isospin, character, or
the degree of collectivity. The generic features of the
time-dependent phase-space exploration through decay,
however, are of a much more general nature [1] and relate
to the quantum manifestation of classical chaos in the
time-dependent picture [2—5]. The nucleus is especially
well suited for addressing such questions because of the
inherent quantum nature and a generic chaoticity of the
dynamics. There is also a wealth of experimental data
which could be useful in verifying some of the theoretical
concepts.

The study of chaos in nuclear physics has been mostly
based—so far—on level statistics [6]. In practical terms
this is rather restrictive since a reliable statistical analysis
requires very precise energy resolution. It also does not
provide firm means for investigating the role of collectivity
and mechanisms of its coexistence with chaos [7]. In
this respect the study of temporal correlations between an
initially prepared nonstationary state and a state to which it
evolves seems to be much more appropriate. Nuclear giant
resonances are of central interest in this connection because
they are located in a region of high level density which is
expected to be dominated by chaotic dynamics. To make
the theoretical studies meaningful one needs a scheme
which incorporates the relevant elements, such as the
possibility of defining a physical collective state, a realistic
modeling of the background states whose complexity is
consistent with the Gaussian orthogonal ensemble (GOE)
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of random matrices [6], and, finally, the realistic coupling
between the two.

The recently developed model [8], based on a diago-
nalization of the full nuclear Hamiltonian consisting of a
mean field part and a residual interaction,
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in the basis of one-particle—one-hole (1p-1h) and 2p-2h

states

1) = afa,l0), 12) = a} a} ananl0), )

fulfills these requirements and proves numerically manage-
able [9]. A prediagonalization of the two-body interaction
v in the 1p-1h and 2p-2h subspaces defines 1)y =3, ciln
and |2) = 3, C3]2), and the coupling is mediated by the
off-diagonal elements ¢ 1|v|2) and their complex conjugate.
An initially excited state, in response to an external one-
body field ¥ = Zij F,-ja,-Jraj, can be represented as

|F) = Flo) = X FilT). 3
1

The amplitudes F; = (1|£|0) contain the entire informa-
tion about the strength of a given spectral line correspond-
ing to the state |1) and about the phase coherence among
these states. On the other hand, the level fluctuations of
the states |3) can be used as a measure of the degree of
complexity of the background states [8]. As soon as the
coupling between the subspaces |1) and |2) is taken into ac-
count, the state originally localized in the 1p-1h subspace,
as defined by Eq. (3), starts leaking into the 2p-2h space.
The degree of mixing depends not only on the magnitude
of v but also on the nature of the energy fluctuations in the
2p-2h space, which can significantly influence the distri-
bution of the coupling matrix elements [9,10]. The most
natural quantity for describing the leakage is the survival
probability, defined as

P(1) = KF(O)IF0). “
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The time evolution of the state vector |F(z)) can be ex-
panded as

IF@) = D ane Bt/ n), ()

where E, and |n) are the eigenenergies and eigenstates
of H in the space of 1p-1h and 2p-2h states. The ex-
pansion coefficients are determined by the initial state as
a, = {n|F(0)). The physical significance of P(t) can be
identified from its relation to the spectral autocorrelation
function G(E) [2,11,12],

P@t) = f dE e EVEGL(E), (6)

where

Gr(E) f dE' Sp(ENS(E' + E) . D

and Sp(E) is the transition strength distribution Sp(E) =
>, |F.,?8(E — E,). Thus P(¢) can be obtained from ex-
periments which measure Sp(E). Because of finite energy
resolution the experiment determines only an envelope of
Sr(E) and consequently smooths out the fluctuations in
P(r). Average structures which are more interesting are
preserved, however, provided that the resolution is not too
coarse.

The calculations presented below for quadrupole excita-
tions in “°Ca are performed in the same basis as in Ref. [9],
i.e., including all 1p-1h and 2p-2h states up to 50 MeV
and using the same residual interaction. We then have 26
1p-1h and 3014 2p-2h states, which ensure a realistic de-
scription of the transition strength distribution. Since the
present study concentrates on the phase-space exploration
and the role played by chaotic dynamics, we distinguish
three cases corresponding to different classes of the spec-
tral fluctuations in the 2p-2h subspace. As established in
Ref. [8] one finds (a) with no residual interaction in the
2p-2h subspace there are many degeneracies in |2) (= |2))
and the nearest-neighbor spacing is strongly peaked near
zero; (b) inclusion of particle-particle and hole-hole matrix
elements in (2|v|2’) removes all degeneracies and leads to
a Poissonian distribution of the nearest-neighbor spacings,
characteristic of generic integrable systems; and (c) use of
the full residual interaction yields GOE fluctuations [6],
characteristic of chaotic dynamics.

The initial state |F(0)) = F|0) [Eq. (3)] is already non-
stationary in the 1p-1h subspace and therefore oscillates
within the limits set by this subspace. The time evolu-
tion of the resulting survival probabilities (|F) is normal-
ized to unity) is shown in the upper panels of Figs. 1 and
2 for the isovector and isoscalar quadrupole excitations,
respectively. It is interesting to note that the isoscalar ex-
citation, being more collective, overlaps—on average—
more frequently with its initial state, as a comparison of
the horizontal lines in Figs. 1 and 2 indicates. Includ-
ing the mixing with 2p-2h states [making use of Eq. (5)]
the results (Figs. 1 and 2) show that the isovector exci-
tation mixes much more efficiently with the background
2p-2h states, both concerning the oscillatory behavior and
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FIG. 1. The time dependence of the isovector quadrupole
survival probability P(z) in “°Ca: (I1p-1h) no coupling to
the 2p-2h subspace; (a) no residual interaction in 2p-2h sub-
space; (b) including only particle-particle and hole-hole ma-
trix elements in the diagonalization of the 2p-2h subspace;
(c) diagonalization of the full residual interaction in the 2p-2h
subspace. The solid horizontal lines indicate the time-averaged
asymptotic values for the corresponding P(z).

the asymptotic value of the survival probability P(z). The
latter systematically decreases with an increasing degree
of complexity in the background states [going from (a)
to (c)]. Most interestingly, for the isovector excitation
in the chaotic case (c), P(t)N, where N denotes the total
number (3040) of states in our space, reaches—on av-
erage—a value close to 3 (3.08). It is known [1] that
a state evolving from generic initial conditions does not
visit all the regions of the space with equal probability
but overlaps more frequently with its initial value. This
effect, characteristic of quantum ergodicity [1], is present
even if the whole space is accessible. In this extreme
case it is just the factor of 3 which prescribes the lowest
limit on the average asymptotic behavior of P(z). Such
an “‘elastic enhancement” finds empirical evidence in nu-
clear physics [13], and the factor of 3 is considered as
a quantum-mechanical signature of chaos [4]. While the
factor of 3 is consistent with random-matrix-theory esti-
mates [14], the same asymptotic value may, in principle,
be associated with the regular dynamics [3] if the sub-
space is defined such that there are no other conserved
quantum numbers than those defining it. An additional
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FIG. 2. Same as Fig. 1 but for the isoscalar quadrupole
survival probability.

requirement for chaoticity is the initial dephasing of P(r)
below its asymptotic value [2,3,5,12]. Such a dephasing,
indeed, takes place for the isovector case, as can be seen
from Fig. 3 where P(t) = ff) dt' P(¢")/t for all three types
of the background spectra is displayed. As a consequence
of the high density of states the corresponding ‘“‘correla-
tion hole” [2] extends over a time interval, 4 orders of
magnitude longer than the characteristic “excitation time”
of ~10722 sec. It should be emphasized that, contrary to
all previous studies, no ensemble average over Hamiltoni-
ans or initial conditions has been employed in our inves-
tigations. The emergence of the correlation hole should
not depend on the restrictions of the model space (1p-1h
and 2p-2h). Its temporal extent may increase, however, in
a more complete space due to an effective increase in the
2p-2h level density in the vicinity of the giant resonance.
The isoscalar excitation (right panel of Fig. 3) only shows
a trace of such a behavior, and the asymptotic values of
P(t) are systematically larger even though the initial state
is coupled to the same background.

The question “What makes the isoscalar state so strongly
localized?” then arises. Is it a manifestation of collectivity
or, perhaps, is it that the specific properties of the coupling
matrix elements block certain regions of the phase space
and ergodization only occurs in the unblocked regions? A
quantity which appears helpful in resolving this question
originates from the concept of entropy. The information
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FIG. 3. The time-averaged survival probability P(¢) in units
of 1/N (see text) for the isovector (left-hand side) and isoscalar
(right-hand side) quadrupole resonances: (a) no residual interac-
tion in 2p-2h subspace; (b) including only particle-particle and
hole-hole matrix elements in the diagonalization of the 2p-2h
subspace; (c) diagonalization of the full residual interaction in
the 2p-2h subspace.

entropy of the state |F) can be defined, in a given basis |k),
as

= > pilnpy, (8)
k

where p, = [(k|F)|>. It provides a quantitative measure of
the complexity of the state |F) and its localization length in
the basis |k) [15]. The so-defined K is, in principle, basis
dependent, but the physically preferred basis is determined
by the mean field [16]. As is well known, the mean field
provides the dynamical parameters, such as the inertial
mass or the restoring force for the collective motion. As
the most smooth component of the nuclear Hamiltonian
[17] it thus provides a natural reference for quantifying
local GOE-type fluctuations. Further arguments for the
appropriateness of the mean field basis relate to the degree
of noncommutativity [18] between the operator whose
fluctuations are to be studied and the one spanning the
basis. Differences in eigenvalue spectral fluctuations [8]
indicate that the degree of noncommutativity between our
full Hamiltonian and the mean field is sufficiently high so
that the mean field basis can be considered “random” with
respect to the full wave function.

In our case the mean field basis corresponds to the un-
perturbed basis of states |1) and |2). Calculating K(z)
along the “trajectory” |F(¢)) for the isovector and isoscalar
states, we obtain asymptotically values of 7.10 and 6.53,
while the corresponding initial values are 2.56 and 2.40,
respectively. This is to be compared to K%°E = 7.29
[KOOE = y(N/2 + 1) — (3/2) [15], where ¢ is the
digamma function and N is the number of basis vectors].
A comparison of these numbers indicates nonuniformities
in the p, distribution, especially for the isoscalar exci-
tations. Actually, even the GOE-type fluctuations result
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in a Gaussian distribution which is nonuniform (a uni-
form distribution maximizes the entropy and corresponds
to pr = 1/N which, for N = 3040, gives K = 8.02).

In view of the above mentioned nonuniform phase-
space exploration, we find it instructive to calculate the
spectrum of ¢ moments for {p;} and to introduce a
generalized entropy [19]

N
Kq=11 In > pi. 9)
9 k=1

From this definition it follows that K, = K, if ¢, < ¢,
(provided >, pi = 1). Equality holds for the uniform
distribution. For g — 1 Eq. (9) yields the information
entropy [Eq. (8)]. The most important property of K,
is that with increasing g a higher weight is given to
the largest components in the set {p;}. For g — 0,
on the other hand, K, just counts the number of sites
(here the basis vectors |k)) visited, irrespective of how
frequently they are sampled. For this reason Eq. (9) also
constitutes a basis for defining the multifractal dimensions
of nonuniform fractal sets [20].

For selected g values Fig. 4 compares the time evolu-
tion of K,(¢) for the isovector and isoscalar excitations
when the background states have GOE fluctuations [case
(c)]. As one can see from the large-g behavior of Kq(t),
which are systematically smaller for the isoscalar excita-
tion, the large components of these remain much more
localized (larger) than those of the isovector excitation.
Since, by probability conservation, the number of signifi-
cant components is smaller in the former case, the ampli-
tude of oscillations is larger in the corresponding K, ().
On the other hand, the dynamics start to look similar in
both cases as g decreases and, for ¢ — 0, K, approaches
a value of 8. This signals that, on the level of small proba-
bilities, the whole space spanned by 3040 states is visited.
This aspect of the dynarnics is consistent with the scal-
ing properties of the transition strength distribution for the
isovector and isoscalar states discussed in Ref. [9]. On
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FIG. 4. The time evolution of the generalized entropies
defined by Eq. (9) for the isovector (left-hand side) and
isoscalar (right-hand side) giant resonances corresponding to
case (c¢) in Fig. 2. The horizontal marks on the left-hand side
of each panel denote the asymptotic values of K, for ¢ = 4 and
g = 16.
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the level of small components they both scale. The simi-
lar calculation of K,(¢) for the cases (a) and (b) shows
that the states evolve to configurations characterized by
significantly smaller entropies.

It would be very interesting to verify some of the above
predictions experimentally —especially the appearance of
the correlation hole in the average survival probability
P(¢). This quantity is accessible through the convolu-
tion formula [Eq. (7)] in conjunction with Eq. (6). For
the purpose of addressing specific questions concerning
the quantum-mechanical phase-space exploration of col-
lective modes, the full set of “generalized entropies” ap-
pears to be a useful theoretical tool.
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