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Future gravitational-wave experiments looking at inspiralling compact binaries could achieve the
detection of a very small effect of phase modulation induced by the rails of gravitational waves.
Once a binary signal has been identified, further analysis of data will provide a measure of the total
mass-energy M of the binary, which enters as a factor in this tail effect, by means of optimal signal
processing. The detection of the effect will then consist in showing the compatibility of the measured
values of M and of the other parameters depending on the two masses of the binary. This illustrates
the high potentiality of gravitational-wave experiments for testing general relativity.
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The first direct detection of gravitational radiation
will probably take place in future gravitational-wave
experiments such as LIGO and VIRGO. For the moment,
the detection of gravitational radiation has only been
indirect, thanks to the very precise timing observations
of the binary pulsar 1913 + 16 [1]. Among the best
candidate sources for a direct detection of gravitational
radiation are binary systems of compact objects (neutron
stars or black holes) in their late inspiralling stages of
evolution [2]. The number of neutron-star coalescences
is expected to be a few per year out to a distance
of 100 Mpc [3] (with maybe a comparable number of
black-hole coalescences), at which distance LIGO and
VIRGO might observe the waves with a signal-to-noise
ratio (SNR) ~10. Such a premiere will open a totally
new field in astronomy, and will permit verification of
some fundamental predictions of general relativity. Often
quoted is the possibility of verifying that the waves are of
pure helicity two, with no admixture of other spin states.

The purpose of our work (this Letter and the detailed
account [4]) is to show, on the basis of a particular effect
related to the so-called gravitational-wave tail effect, that
the observations of inspiralling compact binaries will
permit also verification of some aspects of the nonlinear
structure of general relativity. This verification is made
possible by the now recognized fact [5] that a very
precise general relativity prediction is needed to reach
full potential accuracy on the measurement of the binary’s
parameters.

The tail effect is essentially due to the propagation of
gravitational radiation on the curved background space-
time generated by its own source. More specifically, the
tail of the radiation results, at lowest order, from the non-
linear interaction between the time-varying quadrupole
moment of the source (which generates the linear radia-
tion) and its monopole moment, or total mass-energy M
(which generates the background). The tail radiation has
the distinctive property (“nonlocality” in time) of depend-
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ing on the source’s dynamics at arbitrary remote instants
in the past, anterior to the simply retarded time ¢ — r/c.
This reflects the fact that gravity propagates not only on
the light cone (direct propagation with the speed of light
c), but also within the light cone (averaged propagation
with all velocities less than ¢). (See [6] for references on
tails and related nonlinear effects.)

The detection of the tail effect (or of effects immediately
related to it) in future gravitational-wave experiments will
provide direct evidence that gravity propagates on a curved
space-time—that generated by its own source. (Note
that indirect evidence from the observations of the binary
pulsar is probably out of reach [6].) This will represent
an interesting test of the nonlinearity of general relativity
in the “gravitodynamics” regime of the theory, involving
rapidly varying and strong gravitational fields. This will
also provide an independent measurement of the total
mass-energy M of the source.

The tail effect arises at the so-called 1.5 post-
Newtonian (1.5-PN) approximation in the radiation, i.e.,
at the relative order ¢ beyond the usual quadrupole
radiation. Let us consider the radiation emitted by a
general isolated source, at a large distance r from the
source (neglecting terms that die out like 1/r%). More
precisely, we denote by A(s) that linear combination
of the components of the wave which is directly felt
by some detector [e.g., A(z) is the relative variation of
the arm’s length of a laser interferometric detector].
Then the expression of A(z), including all terms in the
post-Newtonian expansion up to the order ¢~ 3, can be
written [7] as

2GM (' [ (r - t') 11]d2ho
— + ! + 5 ).
h(t) = ho(r) 3 ffx drIn{ — 12 ) ar

(H
This expression is valid for any slowly moving source,
independent of the strength of its internal gravity. The
first term ho(z) denotes the usual multipolar radiation
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up to the order ¢~ 3, and can be referred to as the

“front” of the wave. The second term in (1) is the
tail, which is the first purely nonlinear contribution in
the wave. The tail depends on two constants, namely,
the total mass M of the source, and a gauge-dependent
constant » having the dimension of time. The constant
b can be chosen at will: it is defined by the relation
t =ty — 2GM/c3) In(r/ch), linking the time ¢ used by
the experimenters at distance r from the source and the
time ¢ty of a harmonic coordinate system covering the
source.

The Fourier transform A(w) of h(t), where w = 27 f
denotes the angular frequency, can be computed in terms
of the Fourier transform Ag(w) of ho(r). The result is
particularly simple, and reads [6] (see also [8,9]) as

i) = o) 1+ T juf]ew, @)
where the square brackets represent a tail-induced modu-
lation of the amplitude of the wave front, and where

2GM
0w) = 225 o] b) 3)
represents a tail-induced modulation of its phase. (|wl|

is the absolute value of w.) Note that (2) and (3) are
valid only for low frequencies such that GMw/c? is of

|
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The constant FH is inversely proportional to the distance
of the source, and ., ¢. denote the instant of coalescence
and a final constant phase. The phase W(w) involves a
post-Newtonian expansion parametrized by x = {G(m; +
my)w/(2c®) 3, where m; and m, are the two masses of
the binary, depending at 1-PN level on the mass ratio
v = mymy/(m; + m)? and at 1.5-PN level on a particular
combination 8 of the orbital angular momentum and of
the spins of the binary. This expansion is endowed with a
large multiplying factor of order ¢® (where ¢~ is the order
at which radiation reaction effects appear), involving
the “chirp mass” M = (m;my)>°/(m; + my)'/5. The
radiation reaction tail contribution is the term with 167
in ¥(w).

The “direct” tail-induced modulation of the phase
0(w) given by (3) does not modify, at lowest order,
the total energy carried away by the radiation, but
implies or effect of shifting the positions of the different
frequency components of the wave along its path. This
phase modulation is required in order that wave packets
propagate from the source to the detector with the
“correct” group velocity (see [6]). As is clear from
(4)—(5), 6(w) is smaller by a factor ~c™> than the

1068

3 c3 33
e +
4(4G.7Vlw) {1

small post-Newtonian order ¢ 3. The constant b’ in (3)
is related to » and to Euler’s constant C = 0.577... by
b' = bexp(C — 11/12). In this Letter, we shall choose
the value b’ = 1/(2w;), where w; is the “seismic cutoff”
frequency of a laser interferometric detector, below which
the seismic noise prevents detection.

The tail-induced modulation of the amplitude in the
square brackets of (2) implies a modification of the total
amount of energy carried away by the radiation, and
thus a modification, driven by radiation reaction, of the
internal dynamics of the source. This results in a tail
contribution in the equation governing the evolution of
the orbital frequency of an inspiralling binary. It can
then be shown that the modulation of the amplitude
given in (2) is exactly canceled by this effect, and that
an important tail contribution arises in the phase of the
wave front itself [5,8,10]. We shall refer to the latter
as the “radiation reaction” tail contribution in the phase,
Considering as usual a “model” wave form where only
the post-Newtonian corrections in the phase are taken into
account, we can write the Fourier transform (2)—(3) of the
wave generated by an inspiralling binary as

fl((l)) — g_[w—7/()ei{‘ll(w)+9(w)} (4)

(with @ > 0), where 6(w) is given by (3), and where [10]
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radiation reaction tail contribution in ¥V (w). Here we

shall assume that the post-Newtonian expansion in ¥(w)
does not contain, at the 4-PN level, a term of the type
vx*Inx which would yield, when multiplied by the factor
~(GMw/c?) 753, a term of the same type as 8(w). This
assumption is justified by the physical interpretation of
6(w) in [6], but it cannot be proved presently, neither
by a wave-generation computation, which is limited to 2-
PN level, nor even by a method of perturbation of the
Schwarzschild background, which deals with the limit
v — 0.

The problem of the actual detection of #(w), by
the method of parameter estimation, is now considered.
Matched filtering is the appropriate technique for extract-
ing the binary signal out of the detector noise. It consists
of correlating the output of the detector, containing the
signal h(¢) superposed with some Gaussian noise, with a
filter g(z) whose Fourier transform is

g(@) = kh(®)/Sy(w). (6)

In (6), h(w) is the Fourier transform of the signal, Sj,(w)
is the power spectral density of the noise, and k is
an arbitrary real constant (see, e.g., [2] for a review).
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The SNR obtained after matched filtering is the best
achievable with a linear filter. It reads as

[ de @)
-(I5Ne) o

The matched filtering technique necessitates beforehand
the knowledge of the signal. In practice, however, only
the form of the signal is known (with some precision),
and some unknown parameters, such as the two masses
of the binary, are to be measured. This is accomplished
by maximizing the correlation with a whole family
of filters (6), corresponding to different values of the
parameters. The parameters of the filter maximizing the
correlation are the “measured” parameters attributed by
the experiments to the real signal. These parameters do
not exactly agree with the real signal parameters, since
they depend on a particular realization of noise in the
detector. However, their statistical distribution over a
large number of realizations of noise in a large ensemble
of detectors is Gaussian (for Gaussian noise and for high
enough SNR) and centered on the signal parameters,
with computable variances and correlation coefficients.
This consideration assumes, of course, that the filters are
accurately matched, by (6), on the signal. If this is not the
case, the expectation values of the measured parameters
will disagree with the real parameters. Thus, the inclusion
of post-Newtonian correction terms in the filters permits
a more accurate determination of the signal parameters.
Note that a small higher-order term like 6(w) improves
the value of the maximum SNR by a quantity of the order
of the square of this term, which is in general negligible
(see, e.g., the appendix of [4]). Thus, if one wants a high
SNR but accepts a poor determination of the parameters,
one can use a simpler filter including only lower-order
effects.

The wave-front phase W(w), given by (5), is a function
of the two masses m; and m; of the binary through the
chirp mass M and the parameters v,x. Let us choose
M and the reduced mass u = M v?/> as two independent
mass parameters. Now the tail-induced phase 6(w) brings
in the total mass M = m; + m; as a new parameter,
which evidently is not independent of the parameters in
the wave front since it is equal to M %2432, In order
to detect #(w), we shall, first, correlate the output of the
detector with the family of filters (6) in which A(w) is
given by (4)—(5), and, second, maximize the correlation
by varying the mass M in factor of 6(w) independently of
the other parameters, i.e., M and u. (Thus, we assume
that, in the filters, the values of M and the combination
M52, 73/2 do not a priori agree.)) In this way, the
measurement of M will permit a rest of the existence
of #(w) in the real signal. Indeed, if #(w) exists, the
best filter of the family, corresponding to the maximum
correlation, will find a value of M which is compatible
with the measured values of the other parameters (i.e.,
which is approximately equal to M>/2,~3/2). On the

contrary, if #(w) does not exist, the best filter of the
family will find a value of M which is compatible with
zero, together with some realistic values of M and w.

The test could be represented in the m;,m, plane of
the two masses of the binary, in a way somewhat similar
to the test of the existence of gravitational radiation in
the binary pulsar 1913 + 16, where the change in the
orbital period P of the pulsar, the relativistic periastron
shift @ of the orbit, and the redshift-Doppler parameter
v are plotted in the m,,m. plane of the pulsar and its
companion [1]. The test would consist of the intersection
at one single point in the half-plane m; = m, (say) of
three curves corresponding to the measurements of the
total mass M which is in factor of the tail, and of the
two parameters of the wave front M and w (the three
parameters M, M, and w being independently varied and
measured in the filtering process). The curves would be
surrounded by 1-o error bars reflecting the uncertainties
in the measurement. The intersection point would give,
within these uncertainties, the values of the two separate
masses m; and m, of the binary, as determined by general
relativity.

We now investigate the level at which the above test
could be implemented, i.e., the level at which it would be
possible to detect 6(w). For this purpose, it is sufficient
to find the level at which the parameter M in factor of
6(w) can be attributed, with some confidence, a nonzero
value. Thus, we need to compute the 1-o error bar, say,
oy in the measurement of M, and to compare o) with
the value of M itself. The 1-o confidence level at which
0(w) can be detected is simply the level at which oy
gets smaller than M. We shall compute o, in the case
where we know a priori that the spins of the stars are
negligible, and thus where five parameters are relevant to
the construction of filters (6): four parameters ¢., ., M,
and u in the wave front, and the parameter M multiplying
the tail contribution.

Some simple models of noise in the detector are used.
We assume first that the spectral density S,(w) of the
noise is infinite outside the bandwidth [w,, w,], where w
is the seismic cutoff frequency to which &’ in (3) has been
related. Inside the bandwidth, we assume that the noise is
either white,

Sp(w) = const, (8)

or colored in the sense appropriate for shot noise in the
standard recycling configuration of a laser interferometric
detector (see, e.g., [2]),

Sp(w) = constw[1 + (w/a)k)z]. )

The frequency w; in (9) is the so-called “knee” frequency.
We adopt here the value w; = 1.44w,; which maximizes
the SNR (7), all other parameters being fixed.

The optimal filtering process is now simulated. A
signal h(w) given by (4)—(5), and depending on a
known set of signal parameters, is added to a particular
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realization of simulated Gaussian noise with spectral
density (8) or (9). The resulting noisy data are correlated
with a lattice of filters (6) matched on the signal (4)—
(5) and constructed using the method of [11,12]. By
maximizing the correlation, we determine a first measured
value of the parameter M, and by repeating the process for
a large number of realizations of noise (~100), we obtain
the whole statistical distribution of the measured values of
M. The standard deviation oy, of this distribution is then
deduced. Finally, the computation is redone with other
signal parameters and the variations of oy in terms of
these parameters are obtained. It is convenient to express
oy, for a given type of noise, as a function of the optimal
SNR p of the signal, given by (7). The result of the
computation, for both the white and colored noises (8)—
(9) (where w,/27 = 100 Hz and w, /27 = 2000 Hz are
used), is presented in Fig. 1.

As Fig. 1 shows, the precision o, in the measurement
of M is a decreasing function of the SNR. This is to
be expected since the more signal we have, the more
accurate is the determination of M. Note also that, for
a given SNR, o, is larger in the colored noise case than
in the white noise case. This results from the fact that the
colored noise (9) is relatively narrowband as compared
to the white noise (8) (i.e., most of the signal power is
extracted in a smaller range of frequencies). Finally it
can be shown that for a given type of noise o, is fairly
insensitive on both the value of u and M. This means
in particular that a lower SNR is needed to detect the tail
from a binary with a comparatively higher total mass.

The minimal SNR required to detect #(w) from a
coalescing binary with total mass M is directly read
from Fig. 1. All signals whose optimal SNR is such that
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FIG. 1. The standard deviation o, is plotted against the SNR

p (simulation with five independent parameters).
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oy in Fig. 1 is smaller than M have sufficient strength
for detection of #(w). Note that, in practice, we shall
compare the (anticipated) value of o, in Fig. 1 not with
M, but with some measured value of M. However, this
does not make any difference if the SNR is high enough.
For a black-hole binary with M = 20M,, we obtain a
minimal SNR ~35 in the white noise case, and ~100 in
the colored noise case. For a neutron-star binary with
total mass M = 2.8M,, we obtain ~250 (white noise)
and ~750 (colored noise) [4]. Note that these values
depend on the number of independent parameters which
are used in the filtering process [13]. With six parameters
including the spin-orbit parameter B the values are larger
by a factor ~4, but with four parameters excluding B8 and
m we get a factor ~0.4 of improvement (see [4]).

Our conclusion is that the detection of the tail effect
0(w) could be achieved in future gravitational-wave ex-
periments, at least in the case of black-hole coalescences.
(Of course, this conclusion relies very much on the statis-
tics of coalescence events [3] and on the anticipated sen-
sitivity of future detectors.) Owing to the extreme small-
ness (4-PN relative order) of this effect, this shows more
generally that coalescing compact binaries could permit
many tests of the nonlinear structure of general relativity.
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