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Matrix Models as Solvable Glass Models
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We present a family of solvable models of interacting particles in high dimensionalities without

quenched disorder. We show that the models have a glassy regime with aging effects. The interaction
is controlled by a parameter p. For p = 2 we obtain matrix models and for p ~ 2 "tensor" models.
We concentrate on the cases p = 2 which we study analytically and numerically.

PACS numbers: 75.10.Nr, 64.60.Cn, 64.70.Pf

Disordered systems such as structurally disordered
materials (glasses) and spin glasses are characterized
by complex free-energy landscapes and nonequilibrium
phenomena with time scales exceeding the experimental
times [1—5]. In the glass transition, being mainly kinetic,
one has to face the full dynamical problem in order to
grasp many aspects of the physical behavior of these
systems. This is a very difficult problem for realistic
models.

As regards to spin-glass systems, it has been recently
noticed that simple yet microscopically inspired models,
for which the mean-field solution is exact [4], have
both solvable and nontrivial dynamics which agree at
least qualitatively with that of realistic systems [6—
8]. Spin glasses are described by Hamiltonians with
quenched (random) disorder included by hand and do
not have an ordered ground state to which the system
can possibly decay. Structural glasses instead have an
ordered ground state, though when cooled sufficiently
fast they remain in a regime of (self-induced) disorder.
Various aspects of the glassy behavior have been studied
with phenomenological scenarios, dynamical theories, toy
kinetic models, and numerical simulations (see, e.g. ,

Refs. [1—3].
However, unlike the case of spin glasses, there has

been a lack of simple, solvable Hamiltonians capturing
the essentials of structural glasses. Several recent papers
investigate mean-field models which, despite having no
explicit quenched disorder, still have a glassy transition
[9—12]. In particular, the model of Ref. [12] has been
shown to obey dynamical equations identical to those of
the p spin glass solved in Ref. [6]. It is not clear whether
the emergence of such glassy behavior in these models is
a consequence of using "complicated" (i.e., quasirandom)
Hamiltonians.

The object of this Letter is to present a family of very
simple models having a supercooled liquid phase and a
glassy regime. The models represent interacting particles
in high dimensionalities allowing for a natural definition
of chemical potential, compressibility, etc.

We consider n particles moving in an N-dimensional

The two-particle interaction is a function of the distance;
its range is inversely proportional to the parameter p. The
constraints counterbalance the repulsive force and confine
the particles.

We choose n in order to have nontrivial dynamics.
This is fulfilled by the set of choices p —O(gn/NI' ')
and, in particular, we use n = 2nN" '/p! with p —O(1)
or n = 2nN/p! with p —O(N' t' 2) (they coincide for
l =2).

We concentrate on the model with p = 2,

N2Z = ep~ Tr(, ) exp— tr(St SSiS)
nN

where S is the N X n rectangular matrix of elements
s,', and Tr~, ~

runs over either the spherical or the Ising
measure. The cases a ~ 1 and o. ( 1 are related; if n )
1, the free energy satisfies F(n, p) = (I/n)F(1/n, p =
np) + (n —1)N~. We also report very briefiy some
results for the model with p = 3, 4, and, furthermore, for
the ~ version of (2) but with symmetrical S.

The partition function (2) is that of a rectangular matrix
model. In the spherical case it can be solved exactly; it
does not have a glassy phase transition but behaves like
a "liquid" at all temperatures. The ~ model has, instead,
three phases, and its phase diagram is similar to the one
described in Ref. [10]: (i) A high-temperature (liquid)
phase in which its free energy coincides (up to a constant)
with that of the spherical model. (ii) Low-temperature
T ( Tf ("crystalline" ) states that dominate the low-
temperature Gibbs measure. The statistical transition is
first order. (iii) A dynamical low temperature ("glass" )
regime T & Tg.

space, in the limit n, N ~ ~ [13]. The particle coor-
dinates are s' = (si, . . . , s~) and a = I, . . . , n. In the
"spherical" case the particles are constrained to move on
the surface ~s'~ = N, Va. In the ~ case they can occupy
only the vertices of a hypercube s; = ~ 1. The Hamilton-
ian reads

1
H —= —g(s' s )".

aWb
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Our strategy is as follows: We first show the equiva-
lence between spherical and ~ models in the high-
temperature phase, and we solve the spherical model for
all temperatures. Then we briefly discuss the nature of
the crystalline states of the ~ model. Finally, we verify
numerically, using Monte Carlo dynamics, these ana-
lytical results. From the simulations it becomes clear that
the ~ model has a dynamical transition at a temperature
Tg

' Below Tg a large enough system asymptotically
reaches an energy that is higher than the analytical
continuation of the high-temperature phase, and it never
(in the limit N ~ ~) "falls" into a crystalline state.
Furthermore, we show that the dynamics in the glass
phase is remarkably similar to that of both mean-field
and realistic spin glasses. We expect that similar results
should be obtained with, e.g. , Langevin or Glauber
dynamics.

Z = X(P) DM Tr~, «~ exp —i — Mabs sp
~ a,b

(3)

The measure DM depends on the M en-
semble we consider, both choices DM —=

Q, ~b dM, bgN/4' exp( N/4t—rM ) (M real, sym-
metric with zero diagonal) and DM = g, ~b dRe(M, b)
&&QN/47r [],(b dim(M, b) X QN/4~ exp( N/4tr—M ) (M
Hermitian) are possible. Then y = 1 and g = ei ~,
respectively.

For the spherical model we have

Let us first perform a Gaussian decoupling of the
quadratic term in Eq. (2) by introducing auxiliary vari-
ables M.b

..

dz' iNP
exp z"," /2m 2a

DM exp — tr In i —B,bz' + 2i M, b ~—N P, P
2 A n ) (4)

Since z are only N variables and the exponent is
symmetric with respect to the permutations of the indices
of z', an admissible saddle point is —iz'~, ~

= p„, Va.
This implies that the solution coincides, in the large
W limit, with that of the same model with the global
constraint, P;, (s,') = n¹

The model written in this form, with Hermitian M, can
be recognized as a form of the generalized Penner model

[14] or of the Penner-Kontsevich model before integrating
over z' [15].

We now prove that the high-temperature expansions for
the free energies of the spherical and ~ models coincide
to all orders in p. Let us go back to the ~ version
of Eq. (3) and add a term 0 =

2 P, v, (N —~s'~ . We
later fix v, appropriately. With the symmetric decoupling
Eq. (3) becomes

Z = e(N/2) g „
1 bDM exp N ln Tr&,.1 exp —— s'D, bs

ab2
(5)

with D,b
= 2igp/nM, b + B,bv, . Performing the trace over the s after a Gaussian decoupling, the exponent in (5),

NW(M, v), is
1

W(M, v) = ——tr ln(D + I) + n ln 2 + ln
2

A, exP ——gA, h ',bib —g —' +
ab a

where b, ' =—D ' + I and the dots stand for the higher orders of the series of ln(cos A, ).
The off-diagonal elements of the propagator b„b are O(1/vN). We now choose the v, to impose that the diagonal

elements are also of that order. This yields for v, the implicit relations [D + I],, = 1, and W(M, v(M)) becomes

N 1
W(M, v) = g v, ——tr ln(D + I) + n ln 2 + diag(M).

2 . 2

The term diag stands for the diagrams generated by
the higher orders in A, in (6) with the propagator A.
These are functions of M which can then be treated
as perturbations of trM2 in the integral over M (for
example, the first term is g,b[M, b]4). They are, in turn,
vertices of the "fat diagrams" (with propagator trM2)
which lead to nonplanar diagrams, and hence can be
neglected in the large N limit (order by order in p). This
is in contradistinction to the vertices in the fat diagrams
coming from the trace of the logarithm in (7) (of the form

tr M~) which cannot be neglected for any k.
Identifying v, ~ i pz, /a —1, the condition for the v,

now coincides with the saddle point equation for the z'
in the spherical model. Hence both free energies coincide
to leading order in N, up to an additive constant in the
entropy.

In order to solve the spherical model we return to
Eq. (2). Assuming u ~ 1 and using the large N equiva-
lence with the global constraint we get, up to constant
multiplicative factors,
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Z, ph
—e~"' dx; exp —N — E x;2pp (8)

l g ln[x,' —x,'(.2P,. ~ .

The x; ~N are the "diagonal" values of S in its canonical form and E[x;] reads

E[x] = N g —x; — x, — In~x;~
p, , (n —1)

, (n ' 2n ' P 'j
We define a symmetric density of eigenvalues p(x) =

2 g;[6(x
the generating function

—x;) + B(x + x;)]. Following Refs. [16,17] we propose

4z
F(z) = (n —1) 4z

g
(z' —a') (z' —b') (z' + c') (10)
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FIG. 1. Numerical values for the energy density vs tempera-
ture for the spherical (crosses) and ~ (diamonds) models. N =
n = 50, n = 1. The solid line shows the analytical solution
for the spherical model.
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g =—2n T. The jump across the cut of F yields p. The
constants a, b, c, and the saddle point value of p, are
determined by the following conditions: (i) p —1/z as
z ~ ~ (normalization), (ii) F(z) has no pole in z; = 0,
and (iii) the constraint gx; = n = aN. Defining a2

a ~ b, these conditions yield fifth degree polynomi-
als for a+, a, c, and p, . The energy density is ob-
tained from a contour integral of z4F(z) around the cut
and gives e = E/nN = (1/n) [—1 + (a2 /32gn) (a2 +
4a+ + 8a~c )]. In Fig. 1 we plot e vs T for n = 1.

At T —0, E = N2[(n —1) + T/4] for n ) 1 (and
E = N~T/4n2 for n ( 1), showing explicitly that the
entropy tends to —~ logarithmically at T = 0. Then
the entropy of the high-temperature solution vanishes at
some temperature To ~ 0 (for n = 1, To —0.15). The ~
model has positive entropy, and hence there must be a
temperature Tf ~ To in which the equivalence with the
spherical model breaks down and the ~ system undergoes
a static transition. Two possibilities then arise: the low-T
partition function is dominated either by a glassy state or
by an ordered "crystalline state" [10]. For the spherical

model a little algebra shows that the ground states are
obtained by constructing the N X n matrix S with rows
(columns) of orthogonal vectors of norm ~n (JN) for
n ) N (N ) n). For the ~ model, we are not always able
to construct such a matrix with +. 1 elements, though for
some values of n, N this is possible (e.g., n = N = 2"),
in which case the energy of the lowest configuration
coincides with that of the spherical model. For these N, n,
these states dominate the low-T partition function; for
other values we have observed numerically other states
which though nonoptimal play the same role at low T.
The important point is that these crystalline ground states
are different from the glassy regime and are not reached
dynamically by large enough systems, as we shall see.

In Fig. 1 we show the analytic and numerical results
for the temperature dependence of the energy. The
numerical points were obtained by means of a slow
annealing in temperature using a Metropolis algorithm
with random updating. The energy densities obtained
in this way ("dynamical energies") tend to have a well-
defined limit with N, for N large enough. For the
spherical model the dynamical energy and the analytically
predicted static energy coincide for all temperatures. In
the high-temperature phase the dynamical energies of the
spherical and ~ models also coincide.

Below the glass temperature Tg —0.5 (n = 1), the
dynamical energy of the ~ model is higher than that of
the spherical model. For the cases in which the ground
state is known (e.g. , N = n = 2"), we have checked that
the system takes a time that grows fast with N to fall into
a crystalline state.

In order to understand the nature of the glass phase,
we have studied the decay of the autocorrelation functions
C(t + t, t ) =— (I/Nn) (P, s'(t + t ) . s'(r )) (t is the
time after a fast temperature quench). Above Tg for
the ~ model, and at all temperatures for the spherical
model, the averaged autocorrelations decay with a time
translationally invariant law [C(t + t„,t ) = C(t)] as in a
system in equilibrium. Below Tg the ~ model presents
aging effects [5]:The autocorrelation functions shown in

Fig. 2 are clearly those of a system away from equilibrium
even for very long times. The autocorrelations have, for
large t, t, an approximate r/t„dependence [for large
r/r, C —(t/t ) ""s] and are strikingly similar to the
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~ ~ ~ t e~ I I
~ ~ the full dynamical problem as developed for mean-field

spin glasses [6].
We wish to acknowledge useful suggestions from

S. Franz, E. Marinari, J. Ruiz-Lorenzo, and G. Zemba.

0.001 0.01 0.1 10 100

FIG. 2. Aging curves for the ~ model for n = 1 at T = 0.2
(( T~); ln - 1n plot, C(t + t, t ) vs t/t for t = 1000, 300,
100, 30, t up to 3000. N = n = 500.

corresponding ones of mean field [6—8] and d = 3 spin
glasses [18].

Let us mention in passing that we have performed
dynamical simulations of the ~ model (1) with p = 3
[n —N2, P —O(1)], with p = 4 [n —N, P —O(I/N)]
and also of (2) with St = S. In all these cases we have
glassy behavior.

In order to make contact with the theory of systems
with quenched disorder we first note that quenching n —1

particles in random positions in the system described by
Eq. (1) the dynamics of the remaining particle is that
of neural network models (at negative temperature) [19];
SyStemS knOWn tO haVe a spin-gLass behaViO1.

A different strategy that can be used to solve all
the models we have described consists in proposing
a model with quenched disorder which is expected to
have the same dynamical behavior [9,10]. For the case
p = 2 the natural choice is to consider the Hamiltonian
(I) with the s,' defined by s,' = U(ai, bj) t, , where t,'
are either spherically constrained or ~1. The tensor
U(ai, bj) is a quenched random variable taken from the
ensemble of orthogonal transformations R" ~ ~ R'
[i.e., preserving the norm () t ~~

—= g(t,')2]. One then
considers (quenched) averaged quantities over U.

The analysis of the statics uses the replica trick and
goes along the lines of Ref. [10]. We do not describe it
in detail here, but report some results: If the t; are spheri-
cally constrained, the disordered model coincides with the
nondisordered spherical model for all temperatures. If the
t; take values ~1, the high-temperature phase (uncoupled
replicas) also coincides with the spherical model. In or-
der to analyze the low-temperature (glassy) phase of the
disordered model one ends up with a replicated matrix
model. Perhaps more ambitiously, one could try to face
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