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Self-Consistent Microscopic Theory of Fluctuation-Induced Transport
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A Maxwell's demon type "information engine" that extracts work from a bath is constructed
from a microscopic Hamiltonian for the whole system including a subsystem, a thermal bath, and a
nonequilibrium bath of phonons or photons that represents an information source or sink. The kinetics
of the engine is calculated self-consistently from the state of the nonequilibrium bath, and the relation
of this kinetics to the underlying microscopic thermodynamics is established.
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Processes in which some of the energy in a nonequi-
librium bath is transformed into work at the expense of
increased entropy are of great interest in a number of im-
portant areas, but the study of the kinetics of such pro-
cesses is complicated by the fact that no principles of the
power and generality of those of equilibrium statistical
mechanics. exist for such cases. A number of semiheuris-
tic type models have appeared recently that have served
as illustrations that time correlated fluctuations interact-
ing with a spatial asymmetry are sufficient conditions to
give rise to transport [1—3]. An application of this idea
has recently been utilized experimentally as a new type
of molecular separation technique [4]. In addition, it is
clear that spatial asymmetry is a necessary requirement
only when all the odd moments of the fluctuations (in-
cluding orders higher than first) vanish, and that transport
will generally occur even in the absence of a spatial asym-
metry if this requirement is not met [5].

These models, which come under the general heading
of "fluctuation induced transport, " are usually based on a
reduced description of the noisy overdamped motion of a
particle in a periodic potential ~ The nonequilibrium ef-
fects of the irreversible (BS ) 0) interaction of the system
with a nonequilibrium bath are modeled in various ways.
A net current appears as a consequence of the nonequi-
librium effects of the driving, even though the average
driving force vanishes. In this way these nonequilibrium
fluctuations can be used to do work.

This previous work has focused on phenomenology,
and no attempt was made to formulate self-consistent
models. Since the choice of the kinetics of the reduced
system is somewhat arbitrary, it is often difficult to know
whether such descriptions are appropriate, or even al-
lowed by the microscopic laws of physics. In order
to treat these models, self-consistently reduced descrip-
tions need to be carefully derived from microscopic con-
siderations since macroscopic equilibrium kinetics is no
longer applicable. Here we construct a special micro-
scopic model that contains an explicit description of the
bath as well as the subsystem and allows a rigorous de-
termination of the kinetics. This model can be used to
more fully explore the question of what types of ki-

netic description are allowed by the underlying laws of
physics and how these kinetic descriptions are related to
the state of the bath and its fundamental thermodynamic
properties.

We will consider a particle (subsystem) with position
Q coupled to a thermal "Brownian" bath A. , representing
the thermal background environment of the engine, and
to a nonequilibrium bath S. As we will demonstrate, the
nonthermal part of the energy in bath 23 can be viewed
as a source or sink of negentropy (physical information)
that allows the engine to operate, while the thermal parts
of both baths provide the actual energy, as in the case of
Maxwell's demon. The Hamiltonian for the entire system
will be given by

Q + U(Q) + 9f~ + —g(I'k + o)~1'k)
k

+ W.t~ —«(Q) g&k (I)
k

The first two terms on the right hand side describe the
subsystem, where M is the mass of the subsystem.
is the Hamiltonian for the Brownian bath. The fourth
term describes the bath 8, which is represented as bath
of linear oscillators, with frequency spectrum tcuq). The
last two terms are the interaction of the subsystem with
the baths, where e is a coupling constant. The form
of the nonequilibrium bath 8, that of a set of phonons,
was chosen for both simplicity and because of its generic
relationship to many condensed matter type systems.
Extensions of this approach to higher dimension (more
gross variables) are straightforward.

The evolution of 8 is given by

I'q(t) = Aq cos(~qt + @I,)

dr V(Q(r)) sincuk(t —r), (2)
&uk 0

where Aq and $1, are the initial amplitudes and phases of
the oscillators. This equation can be used to eliminate
the oscillator modes and to obtain a description of the
variable Q [6]. We will assume that the interaction of
the subsystem with A. is that of a Brownian particle
and that the frequency spectrum of the oscillator bath 9
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(g~(t)) = 0, P(t) = (A(t)g~(0)),

+(~) = dt exp(icut)@(t) = 4I gu(cu), (6)

where u(cu) = (~~A2(cu))/2 is the energy density that
depends explicitly on the preparation of the bath. In
addition, the "bare" potential is now dressed by the
oscillator bath U(Q) = U(Q) —(cu, /vr) I gV (Q). Here,
for simplicity, we assume a random distribution of initial
phases of the oscillators, which ensures that the noise is
Gaussian. The only approximation that has been made in

going from Eqs. (1)—(3) to Eqs. (4) and (5) is neglect of
the Poincare recurrence time of the system, and Eq. (7)
follows from the random phase assumption.

For the purposes of this Letter we will consider only
the overdamped (I ~/M && 1) case, so that

r(Q)Q = —U'(Q) + eA(t) + V'(Q)CS(t) (7)

The inclusion of the thermal Brownian bath A plays
an important role here since this description will break
down when I ~ = 0. We will use this equation to study
fluctuation induced transport in a system where U(Q) =
U(Q + A) and V(Q) = V(Q + A), so that the Hamilton-
ian is invariant under the translation Q ~ Q + A. As a
consequence, U(Q) = U(Q + A). A portion of a typi-
cal "dressed" ratchet potential U(Q) is pictured in Fig. 1.
Even though the average force on the particle vanishes, a
net current will be produced, which if directed against a
load force can be used to do work. The basic theoretical
problem is to find the mean velocity (Q(t)) in the subsys-
tem given the shape of U(Q) and V(Q) and the properties
of the noise terms g~ (t) and g~ (t).

Since we have started with an explicit microscopic
(time reversible) Hamiltonian, if the system as a whole
is in equilibrium the current must vanish. Therefore,
a stationary current can appear only if the system is
out of equilibrium. This is a basic consequence of the

is quasicontinuous with a frequency density p(cu) of the
Debye type

3' /2' ~ Ico I

~ toe~ (3)& ~c.
which is regularized by a cutoff at high frequency ~, that
is assumed to be larger than any typical frequency of the
gross variable. Since the bath is quasi-infinite, we can
assume that the state of the bath does not change on time
scales of interest as a result of its interaction with the
subsystem. After elimination of the bath variables from
the equations of motion we obtain a nonlinear Langevin
equation for the subsystem,

MQ + r(Q)Q + U'(Q) = 0 (t) + v (Q)C (t) ~ (4)

where I (Q) = I ~ +
I V'(Q)] I g, $~(t) is Gaussian

white noise,

($~(t)) = 0, (g~(t)g~(s)) = 2r~kTB(t —s), (5)

and $g (t) is a Gaussian noise with

U(Q)

FIG. 1. Typical dressed ratchet potential U(Q).

second law of thermodynamics, which requires that no
net work can be extracted from a system in thermal
equilibrium. Work can be extracted from the system
via a Carnot type engine that runs off of two baths at
different temperatures. Our system can operate as such
an engine if 8 is prepared in a quasithermal state, that is,
where the temperature of S is not necessarily equal to the
temperature of the bath A(T 4 T). The equipartition of
energy then gives u(co) = kT/2, jz(t) is Gaussian white
noise with ($& (t)) = 0, @(t) = 21 z k T6 (t), and Eq. (7)
is Markovian, and thus amenable to standard techniques.
The evolution of the probability density p(Q, t) for the
system described by Eq. (7) is then given by the Fokker-
Planck equation,

~,p = ~,&U'(Q)/r(Q) + k», I:~(Q)/r(Q)ap,.(r /r ) I:v'(Q)]'
23 Q =1+

1 + (r~/r~) I
v (Q)]2

'

where r = (T —T)/T.
Equation 8 can be solved for the steady-state solution

with periodic boundary conditions p, (x) = p, (x + A) and
normalization f, p, (x) dx = 1 [7]. This yields an exact
expression for the average velocity

kTt 1 —exp (6/kT)]

f dy e ~l»t" f' dx r'(x)e+1xlti' /~(x)
U'(y)

dy, 6 = W(0) —'P(A) .
27 y

(9)

It is easy to see from Eq. (9) that when the temperature
difference between the baths is zero (r = 0), the current
vanishes identically (since 6 = 0). This is to be expected
and, of course, is a consequence of the second law. The
current will also vanish in the limit I ~/I ~ 0.

From this point on we will only consider cases where
the characteristic noise intensities T and D = max@(co)
are small in comparison to the well depth AU = U(b)—
U(a), which can be ensured by making the coupling
between the system and the bath small enough. This
situation is particularly interesting since analytic results
are possible for both Markovian, and non-Markovian

11



VOLUME 74, NUMBER 1 PH YSICAL REVIEW LETTERS 2 JANUARY 1995

i3= = (I z/1~) U'(x) [V'(x)] dx.

These transition rates can be further expanded in
powers of 1~/I ~, but, for our present purpose, this is
not particularly enlightening. The mean velocity is given
by

(Q) pW [ rP+/kT rP /kT] (12)
This expression can also be obtained from the exact
solution (9) by evaluating the integrals in the denominator
via steepest descent. We see that the current will fIow
in one direction if T ( T and in the opposite direction if
T ) T. Thus, the system acts like Carnot engine, doing
work by making use of two thermal baths at different
temperatures.

The correlation ratchet, a system that is driven by the
effects of colored noise, is obtained from Eqs. (6) and

(7) by setting u(0) = kT/2. Thus, both A. and 9 have
"thermal parts" while 8 has a small part u(co) —u(0) that
deviates from equilibrium. If bath 8 has a nonthermal
distribution over its modes, then u(co) is not constant, and
this manifest itself as time correlations [i.e., g~(t) is no
longer delta correlated] and a net current will arise.

When the bandwidth of the spectrum 4(cu) greatly
exceeds the reciprocal relaxation time of the system t„' =
U"(a), the transition probabilities W can be calculated
by an extension of the variational technique used in [2,8],
where W = Wk exp[ —y F"(0)/kT] and

U'[U'U" + V"U'] dx
/r& &'

)
(13)

and where F(cu) = kT/4u(co), F"(cu) = d F(cu)/den,
with IF"(0)/F(0) I (( t„The mean v. elocity

(Q) pW e y F"(0)/kT —y F"(0)/kT (14)

We have neglected the small corrections to the prefactor
in 8'~ due to the noise color and used the standard

situations [2,8], and since the basics physics is illustrated
most clearly.

For T, D « AU, most of the time the system performs
small-amplitude fIuctuations about the minima of the
potential. Occasionally it will "jump" from the minimum
it occupied to the one on the right or left, with the
probabilities per unit time W+ and W, respectively.
These jumps give rise to the average velocity (Q) =
A(W+ —W ).

For the Markovian case described in Eq. (7) the tran-
sition rates can be calculated via standard techniques
and evaluated by steepest descents. We obtain W
Wk. exp(r P /kT), where

v'U" (a) IU"(b) I

Wg = ex p ( AU/k—T)2'
is the Kramers activation rate, with AU = U(b) —U(a),
and where for small I ~ /I'~,

b-

Kramers expression for this prefactor valid for white-
noise driven systems.

The direction of the current is determined by the
interplay of the shapes of the potential and energy density
distribution u(cu). Just as the current in the thermal ratchet
changes sign when r changes sign, the current in the
correlation ratchet changes sign when F"(0) changes sign.
More details can be found in [2]. These current reversals
are a new phenomenon due to activation effects and are
entirely unrelated to the current reversals found in [3].

Although the corrections y F"(0) to the activation
energy are small compared to the main term, they are
not small compared to kT, and can change W by orders
of magnitude. Excepting the special case where U(Q)
is symmetric with respect to a, the transitions in one
direction will typically dominate overwhelmingly over the
transitions in the opposite direction. The optimal rate

(Q) = AWk- is attained when all the thermally activated
transitions are in one direction. Thus, while the vast
majority of the energy in both A and 'B is thermally
distributed in this near-equilibrium situation it is the
relatively small amount of energy that is not distributed
thermally, or equivalently the negentropy, that allows the
engine to run. On the other hand, if the thermal energy
were removed the engine would immediately stop running
since virtually no transitions would ever occur. It should
be clear from previous analysis that the force driving the
particle comes overwhelmingly from the thermal parts of
the baths. Therefore, we must conclude that while even a
very small negentropic source or sink in 5 allows the
engine to operate, the thermal fluctuations provide the
energy.

As described in the preceding paragraph this system
is an "information engine" analogous to a Maxwell's
demon engine that extracts work out of a thermal bath

by rectifying the thermal fluctuations of the system.
Maxwell's demon is a "being" that uses information about
the system to "choose" only those fiuctuations that are
helpful to make the engine run. This information, which
can only be acquired if the demon is not in equilibrium
with the bath [9], is used to rectify the energy already
available, but otherwise inaccessible, in the thermal bath.
As shown by Szilard [10], the information is acquired
at the expense of an entropy increase of the demon, an
observation that salvages the second law. Similarly it is
clear from the approach used here that our system does
work at the expense of the total increase of entropy of the
baths and operates because of the physical information
contained in the nonthermal energy of the bath, while
the energy is paid predominately in the currency of the
thermal

fluctuations.

In the example given by Brillouin in [9] the demon
uses light photons to determine the location of a particle
and then uses this information to extract work from the
system. The demon needs a source of light that is not
in equilibrium with the bath in order to distinguish the
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FIG. 2. Physical information u;(cu) density near zero fre-
quency. The generic cases where the phonon bath acts as an
information source and the engine runs forward and where it
acts as a sink and the engine runs backward are shown.

signal from the thermal background radiation. The model
presented here can be regarded as a simplified picture of
a bath of photons coupled to a particle in a thermal bath.
By adding or removing photons (energy) from a system
in thermal equilibrium an information source or sink is
created of the same type as described by Brillouin. The
subsystem in this case plays the role of the demon and
allows the information to be converted to work.

This observation is made precise in the following way.
Once the energy density over the frequency spectrum
of the phonon bath u(co) = (cu A2(cu))/2 is known, ther-
modynamic quantities can be calculated. Near equilib-
rium, as is the case for the above approximation, nearly
all of the energy in the two baths is in a thermal state,
and any entropy increase 6S will not change the tem-
perature. In this case the physical information (negen-
tropy) in the phonon bath is given isothermally by H& =
jo' d~ u;(co), where u;(~) = u(cu)/ T—k/2 is the infor-
mation density. Since we have set 4'(0) = 2I ~kT, the
sign of the information contained in the low frequency
part of the spectrum is determined by the curvature of the
information density at zero frequency, u'(0) = —kF"(0)
as illustrated in Fig. 2. The situation F"(0) ~ 0 implies
a low frequency "source" of information in B, and while
F"(0) ) 0 a "sink" in 8 as is illustrated in Fig. 2. As
was shown above, the engine will run in opposite direc-
tions in these two cases. %'hen Hb ) 0 information Bows
out of 8 and the engine turns in one direction. The first
is just thermodynamics, while the second is a result of the
previous calculations. Just the opposite is the case when
Hb ( 0 and when the system is in equilibrium Hb = 0.

Thus the semiheuristic treatments of [2,8] can be made
self-consistent, . and the relationship between thermody-
namic quantities and reduced kinetic descriptions such as
Eq. (4) can be established.

The free energy of the whole system is given by
+ = U + THt, Ho. wever, in the nonequilibrium case g
is generally not sufficient to calculate rates, as should be
clear from the above example. While (near equilibrium)
the free energy does play the role of a stochastic Lya-
punov function, it does not necessarily play a kinetic role
analogous to the one the energy plays in equilibrium sys-
tems, and consequently the kinetics usually cannot be de-
termined from thermodynamics quantities of the bath. In
addition, when more than one gross variable is considered
and when the bath is not in thermal equilibrium the re-
duced description need not possess a local "energy type"-
function of the gross variables in the Langevin equations
(i.e. , the mean "force" is not necessarily curl free) [11).
This is true in our example even when the state of the
bath can be described by a scalar thermodynamic quan-
tity, such as in the quasithermal situation discussed above.

I am particularly indebted to Mark Dykman for many
fruitful conversations and suggestions.
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