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A class of Monte Carlo algorithms which incorporate absorbing Markov chains is presented. In
a particular limit, the lowest order of these algorithms reduces to the n-fold way algorithm. These
algorithms are applied to study the escape from the metastable state in the two-dimensional square-
lattice nearest-neighbor Ising ferromagnet in an unfavorable applied field, and the agreement with
theoretical predictions is very good. It is demonstrated that the higher-order algorithms can be many
orders of magnitude faster than either the traditional Monte Carlo or n-fold way algorithms.

PACS numbers: 02.70.Lq, 05.50.+q, 64.60.My, 75.40.Mg

Monte Carlo (MC) methods [1] have become indispen-
sible tools for nonperturbative calculations in numerous
fields, including materials science, high-energy physics,
chemistry, biology, engineering, and economics. These
methods are used for two fundamentally different pur-
poses: to calculate time-independent quantities (statics)
and to simulate time series (dynamics). In the former
case, the slow relaxation observed, e.g. , near phase tran-
sitions (critical slowing down) and at low temperatures,
is merely a nuisance that has been overcome by a num-
ber of new MC algorithms, including cluster algorithms
[2], vertex algorithms [3], multicanonical algorithms [4],
and hybrid MC algorithms [5]. Such algorithms can be
many orders of magnitude faster than standard MC meth-
ods. However, they all replace the standard MC dynamic
with a different dynamic. Consequently, although such al-
gorithms may be very efficient in the calculation of static
quantities, information about the kinetics of the original
MC dynamic cannot be obtained. There are many in-
stances where the kinetics, rather than just the statics, is of
physical importance. Recently, MC methods using con-
strained cluster-Gipping algorithms have been proposed in
order to obtain information about the long-wavelength ki-
netics of a system [6]. However, in such methods the local
dynamic is modified, and universality arguments must be
made to relate the results to the dynamic of the original
system.

In this Letter, a different class of accelerated MC
algorithms is presented that does not change the origi-
nal MC dynamic and can therefore be used to simulate
time series with very large separations in time scales.
These algorithms incorporate into the standard MC al-
gorithm absorbing Markov chains (AMC). The acronym
MCAMC stands for Monte Carlo with absorbing Markov
chains. With some additional approximations, the lowest-
order MCAMC algorithm corresponds to the n-fold way
algorithm [7]. We demonstrate that MCAMC algorithms
can be many orders of magnitude faster than either the
standard MC or n-fold way algorithms.

In a Markov process the probability of going from
the current state of the system to another state depends
only on these two states, not on the history of how the
current state was reached. Standard MC algorithms are
typical examples of Markov processes. A Markov process
with a finite state space and a discrete time step is a
Markov chain. The Markov chain is often written as a
Markov matrix M the elements of which are the transition
probabilities between the states. The time evolution of
the probability distribution vector vT is then given by
v (m + 1) = vr(m)M. An AMC is one in which at least
one state has the property that transitions out of that state
are forbidden.

The Markov matrix associated with an AMC with q
absorbing states and s transient states is given by [8]
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where I is the identity matrix, 0 is the zero matrix, and the
subscripts show the size of each submatrix. The elements
of the transient submatrix T are the transition probabilities
between the s transient states of M. The elements of the
submatrix R are the transition probabilities from each of
the s transient states to the q absorbing states. Starting
from an initial vector vI, the probability of still being in
any of the s transient states after m time steps is given
by vI T e, where e is the vector with all elements equal
to 1. Although vI could be any normalized probability
distribution over the transient states, in this work we will
take vI to represent one particular transient state. It is
easy to show that one can obtain the time m for exiting
to one of the q absorbing states from the solution of the
equation

where r is a random number uniformly distributed on
the interval (0, 1]. Note that the stochastic variable m

is independent of which one of the q states the AMC
ends up in. The elements of the vector of q unnormalized
probabilities

Q =v, I+ gT" I R,
), ,

(3)

give the probability of exiting to each corresponding state,
given that the system has exited from the transient sub-
space in m time steps. After normalization, this proba-
bility distribution can be used to pick a particular state
into which the AMC exits. This is done by using another
uniformly distributed random number. Equations (2) and
(3) are the only equations needed to include absorbing
Markov chains within a Monte Carlo simulation. In prac-
tice, it is computationally sound policy to obtain all the
eigenvalues and eigenvectors of T and utilize the spectral
decomposition of T within the AMC portion of the algo-
rithm to numerically solve Eqs. (2) and (3).

The MCAMC algorithm has the following steps:
(0) The system is in an initial state represented by vI .

(1) Write an s X s transient matrix that includes at least
the initial configuration, but ideally will include other
states (which may represent many configurations of the
system that are related by symmetry). The additional
states included as transient states should be those the cur-
rent configuration has the largest probability of exiting to.
(2) All configurations that the transient states can exit to
in one time step must be included in the absorbing states.
(3) Use Eq. (2) to find the time spent in the transient
state subspace, and Eq. (3) to find a new configuration
for the system. (4) Iterate the procedure using the new
configuration as the next initial configuration. Thus, once
the system has exited to one of the q absorbing states,
this decides the initial configuration of the system for

a different AMC with different transient and absorbing
subspaces, and the process is iterated.

To illustrate the MCAMC algorithm, we apply it to
the square-lattice nearest-neighbor Ising ferromagnet in
a magnetic field. The Hamiltonian is given by 9f =
—1P~;, &

s;s, —H g; s;, where the spins s; = ~ I. The
sums run over a11 nearest-neighbor pairs and over all N =
L sites, respectively. Periodic boundary conditions are
used. The isotropic two-body coupling constant is given
by J ) 0 and the magnetic field by H. To study the decay
of a metastable phase, we apply a negative magnetic
field at a temperature below the critical temperature T„
and start with the configuration of all spins +1 (which
we call the C+ configuration). Standard droplet theory
(for a recent review on metastability see Ref. [9]) shows
that in order for the metastable phase C+ to decay,
one or more critical droplets must nucleate via the
random superposition of microscopic fluctuations. Since
the critical droplet is of a certain size, the average time
before its creation, and thus the metastable lifetime, is
much longer than the microscopic time scales. Although
any local dynamic can be used within the MCAMC
framework, in this Letter only Metropolis updates [1] are
performed. We measure the number of Monte Carlo steps
per spin (MCSS) until a configuration is reached which
has an equal number of +1 and —1 spins. The average
lifetime 7- of the metastable state is found by averaging
over a number of starts from the C+ configuration.

A standard MC algorithm randomly chooses a spin and
then decides whether or not to flip it. Each spin in the
L X L lattice, with periodic boundary conditions, is in
one of 10 possible energy classes which are determined
by how the spin is oriented with respect to the applied
field and the nearest-neighbor spins [7]. The number of
spins in class i is n;, and the probability of flipping a spin
in class i once it has been chosen is p(i).

The s = 1 MCAMC algorithm is defined to have a
single transient state, which is the current state of the
spin configuration. When spins belonging to each class
are grouped together the submatrix Ri&&ip = (nip(1), . . . ,

nipp(10))/N. Define Qp = 0 and Q, = g';=& n;p(i).
Since M is a Markov matrix, its row sums are unity,
so the transient matrix is Ti&&i = 1 —Qip/N. The time
increment to flip a spin is found from Eq. (2) to be m )
In(r)/ ln(1 —Qip/N) ~ m —1. If one relaxes the con-
straint that m is an integer, and expands to lowest order for
small Qip/N, this equation becomes m = N ln(r)/Qip, —
and one has the standard n-fold way algorithm [7]. In
both the s = 1 MCAMC and the n-fold way algorithm,
another random number is used to choose which of the 10
classes to pick via Q, i ( rQip ~ Q, , and a spin from
class j is randomly picked and flipped. As shown in
Fig. 1, at low temperatures the s = 1 MCAMC algorithm
can be many orders of magnitude faster than the standard
MC algorithm. At J/T = 3 the speed improves by a
factor of about 107.
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At low temperatures in the s = 1 MCAMC algorithm,
once a spin has fIipped from the C+ configuration, it
is extremely probable that in the next iteration this spin
will be chosen again to fIip, and one returns to the C+
configuration. This problem can be addressed by going
to the s = 2 MCAMC algorithm. Whenever the starting
configuration is the C+ configuration or a configuration
with only one spin overturned from the C+ configuration,
one includes these two states in the transient matrix T.
The normal s = 1 MCAMC algorithm is used if the spin
configuration is other than one of the transient states. As
shown in Fig. 1, for J/T = 3 the speed improves by a
factor of about 10 over the n-fold way algorithm.

One can continue to increase the number of states in
T. Figure 1 also includes results from s = 3 MCAMC,
where the three states in T were C+, C+ with one over-
turned spin, and C+ with two nearest-neighbor overturned
spins. At J/T = 3 this s = 3 MCAMC algorithm im-
proves the speed by a factor of about 102 compared to the
s = 2 MCAMC algorithm.

FIG. 1. The average CPU time for escape from the metastable
state is shown as a function of the inverse temperature. This
is for a 24 X 24 lattice in a field of (H~//J = 0.75. For the
standard Monte Carlo algorithm (x) the CPU time is directly
proportional to the average lifetime ~ of the metastable state,
and r (in units of Monte Carlo steps per spin) is plotted on the
right-hand axis. All values of ~ were calculated by averaging
over 10 escapes from the metastable state. The symbol x,
with error estimates, for J/T ~ 1 is calculated from the values
of r from the MCAMC algorithms, while for J/T ( 1 the CPU
time for a standard Monte Carlo algorithm is plotted. The
CPU time from the n-fold way algorithm, which corresponds
to s = 1 MCAMC, is given by the symbol O. The timings
for s = 2 and s = 3 MCAMC algorithms are given by the
symbols + and, respectively. The vertical arrow marks the
exact critical temperature. The solid line is the low-temperature
discrete droplet result [10] for r with 4, = 3 from Eq. (4).
The dashed lines are estimates, described in the text, for the
CPU times for the MCAMC algorithms. The horizontal arrows
indicate that the solid line and symbols x are related to both
vertical axes, whereas the other points and lines are only for the
left-hand axis. The curvature near J/T = 1 is near the value
where H, ~2

= 3J/4 for this system size. Note the spectacular
increases in speed with the MCAMC algorithms.

The MCAMC algorithm offers a further advantage, in
that the statistical error in the average lifetime ~ is smaller
than from standard MC. The average lifetime of an
AMC that starts from state k is given by vl, Ne, where
the fundamental matrix is defined by N = (I —T) ' [8].
For s ) l, the initial configuration in which the AMC
starts is C+ only once, since it must reenter C+ from
a configuration C+ with one overturned spin. Since the
contribution to the lifetime that comes from the escape
from C+ is exact, this reduces the total error in r.

It has been shown that at low enough temperatures 7.

is related to the height of the lowest energy barrier which
must be reached by flipping one spin at a time starting
from C+ [10]. In the limit of low temperature and
large L, the discreteness of the lattice gives an important
contribution to r. Theorem 3 of Ref. [10] states that then

(4)

where 8, = [2J/~H~] and the notation [x] denotes the
smallest integer larger than x. This result, which is re-
stricted to 2J/~H) not an integer and to (H( ~ 4J, is
shown in Fig. 1 as a solid line. It is in qualitative agree-
ment with the measured values of ~. A detailed com-
parison with predictions from Ref. [10] will be published
elsewhere [11].

Using similar reasoning, it is possible to estimate at low
temperatures the temperature dependence of the different
MCAMC algorithms. By assuming that most of the CPU
time is spent in the s = 1 portion of the algorithm, at low
enough temperatures the CPU time should be proportional
to exp[[1 (H, J) —I o(H, J)]/ksT). Here I o is 2J times
the surface area minus 2~H~ times the volume of the
largest compact lattice animal included in T. The dashed
lines in Fig. 1 have these slopes and are drawn to go
through the data point at the lowest temperature available
for a particular algorithm.

Figure 2 shows values for r as a function of ~H~ for
two low temperatures. Note how well Eq. (4) fits the
results. Equation (4) is only valid if the nucleation of
a single droplet is responsible for flipping the lattice into
the stable phase. A reasonable estimate for the crossover
field (which has been called the dynamic spinodal field
[12]) out of the single-droplet regime is H~/2, the field at
which the standard deviation of the lifetime is r/2 [12].
Figure 2 shows that this is a reasonable estimate for the
point at which the results deviate from Eq. (4) at strong
fields.

At higher temperatures, the discreteness of the lattice
becomes less important, and ~ should be given by the
continuum droplet-theory prediction [13—16]

ln(r) = (T)/(H[ —(b + c) ln fH[ + in[A(T)]. (5)

Here (T) is related to the equilibrium zero-field sur-
face tension, the equilibrium droplet shape [17], and the
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FIG. 2. The average lifetime r, as a function of lHl, for
escape from the metastable state is shown for a 24 X 24 lattice
with T/J = 0.2 (T/T, =0,088. ) (x) and T/J = 0.4 (Q). Error
estimates are plotted for each point. The solid lines are the
low-temperature discrete droplet estimates for r from Eq. (4).
The diagrams show the nucleating droplet, reading from the
strongest fields with 4,. of 1, 2, and 3. The dashed lines show
the boundary between the various 4,. regions. The vertical
arrows mark the crossover field H, t, [12], which separates the
single-droplet regime (lHl ~ H~tq) and the multidroplet regime
(Hit2 ~ IHl) for the two temperatures for this lattice size.

FIG. 3. The temperature times the derivative of the logarithm
of the average lifetime with respect to lH l

' is shown as a
function of lHl. This is for a 24 x 24 lattice with T = 0.2J
(x) and T = 0.4J (Q). The solid curves are from the low-
temperature predictions [10] from Eq. (4). Only results in
the single droplet regime, lHl ~ H~t2, are shown. The dot-
dashed and dashed horizontal lines correspond to the exact
[17] zero-field value for (T)/T for T = 0.2J and T = 0 4J, .

respectively. The dashed inclined straight line includes the
theoretical value b + c = 3 in Eq. (5) for T = 0.4J.

spontaneous magnetization. A(T) is a nonuniversal func-
tion. Field-theoretical and numerical calculations give
b = 1 [14,16,18]. For dynamics described by a Fokker-
Planck equation c = 2 [15,16], and a recent MC study is
consistent with b + c = 3 [12].

Differentiating Eqs. (4) and (5) with respect to lHl
allows for direct comparisons with both the discrete
droplet and continuum droplet predictions. This is shown
in Fig. 3. For T = 0.4J a crossover is observed at weak
lHl to the continuum droplet prediction using b + c = 3
and the exact zero-field value for (T) [17]. At weak [Hl
Fig. 3 shows that the T = 0.4J data are consistent with
the theoretical predictions of Eq. (5) with the theoretical
values for (T) and b + c.

MCAMC algorithms can be utilized to study other
interesting low-temperature effects in lattice-gas types
of models. An example is the recent prediction that at
low enough temperatures in the anisotropic Ising model
nucleation occurs through square droplets, rather than
through rectangular equilibrium Wulff droplets [19].

Additional applications of MCAMC algorithms may
include studies of equilibrium properties of systems where
the n-fold way algorithm has been utilized. These include
the anisotropic Ising model [20] (which is related via
a Trotter-Suzuki decomposition to a quantum model
in one lower dimension [21]), and simulated annealing
approaches to minimization [22].

However, the real strength of MCAMC algorithms lies
in the study of slow dynamics in models with a limited
number of local states. MCAMC algorithms will be par-
ticularly useful when there exists a small number of spins

which are rapidly fluctuating, and major rearrangements
of spins occur very infrequently. Examples would be
the kinetics of spin-glass models, where the spins that
fluctuate rapidly are the ones that find themselves in a
local environment with zero energy difference between
the possible spin orientations. Another example is phase-
ordering kinetics in which a few particles undergo rapid
random walks on long fiat portions of interfaces, while
the interfaces move extremely slowly. Similar reasoning
also applies to simulations of molecular-beam epitaxial
growth, where the n-fold way algorithm has been redis-
covered at least twice [23,24]. In all such cases, using
higher-order MCAMC algorithms should substantially de-
crease the CPU time required to obtain the static and dy-
namic information about the system without making any
approximations to the dynamics.
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