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The system of helium-filled Vycor glass exhibits a regime of weak vortex pinning and dissipative
superflow over an extended temperature region below the thermodynamic transition. This regime of
dissipative superflow has an analog in the weak pinning and vortex liquid states found in high 7.
materials. We have studied the ac flow of helium in this regime for the “He-Vycor system. The results
are interpreted in terms of a complex response function with components reflecting the flow-induced

polarization of the medium and the dissipation.

PACS numbers: 67.40.Hf, 67.40.Vs, 74.60.Ge

The phenomenon of dissipative superflow in high T, su-
perconductors associated with weak pinning and the pro-
posed vortex liquid state is a subject of active current
interest [1]. In our discussion, reported here, we explore
the problem of dissipative superflow in an analogous sys-
tem of superfluid “He in porous Vycor glass. As with
the case of high temperature superconductors, the “He-
Vycor system displays strong pinning of vortex lines at
low temperatures and persistent currents can flow with es-
sentially zero dissipation. However, at high temperatures,
but well before the thermodynamic transition is reached,
the strength of pinning becomes weak and even low veloc-
ity superflow leads to vortex motion and attendant dissipa-
tion. This regime of dissipative superflow in Vycor has an
analog in the weak pinning and vortex fluid states of the
high 7. materials. It is our belief that an understanding
of the physics of dissipative superflow in the “He-Vycor
system will be of general value and may provide useful
insight into dissipative processes in the high T case.

For our discussion of dissipative superflow in the *He-
Vycor system we have developed a phenomenological
analysis which follows closely the ideas developed in
the Kosterlitz-Thouless [2] model of the vortex unbinding
transition in 2D He films and particularly its extension
to finite frequencies by Ambegaokar et al. (AHNS) [3].
The essential ideas which emerge in the finite frequency
model are that vortex pairs give rise to both dissipation
and a reduction of the inertia of the superfluid. The
combined effect is expressed in a complex dielectric
function € and is seen as a polarization phenomenon.
Specifically, at finite frequencies dissipation results from
vortex pairs separated by the diffusion length which are
maximally out of phase with the oscillating flow, as well
as from free vortices created by thermal activation. In
addition, vortex pairs of separations up to the diffusion
length can orientate themselves in the oscillating flow and
produce a dissipationless coupling between the substrate
and the superfluid thus reducing the measured supetfluid
density. Both of these results are succinctly expressed in

Eq. (3.1) in the AHNS theory which relates the coupling
of the space average of the superfluid velocity u; to the
substrate velocity v, through u; = (1 — € ')v,. There
is a close analogy here to a dielectric in an ac electric
field, with u; and v, playing the roles of the polarization
and external electric fields, respectively. In the AHNS
treatment of vortex dynamics, the superfluid density is
seen as a response function dominated by the factor
€~! and has a rather broader interpretation than in the
traditional two-fluid model. We will adopt a similar
approach in this report of superflow in a porous medium
and find that a generalized velocity-dependent dielectric
function provides a consistent framework within which to
analyze our results. In general terms, since the superfluid
density in a porous medium is the stiffness coefficient
[4], we find a “softening” of the medium resulting
from vortices generated in large amplitude mass flows
analogous to plastic deformation in a crystal containing
a high concentration of stress-generated dislocations [5].

Nondissipative coupling of the superfluid to the motion
of the substrate has long been known in porous media; a
discussion of this has been given by Bergman et al. [6].
The effect results from the superfluid having to follow
the complicated surface of the solid structure, which plays
the role of a static impurity. In an acoustic experiment,
this appears as a refractive index n which measures the
longer path followed by a fourth sound wave. In an
inertial experiment [7] it appears as a tortuosity factor
£ (€ = n72), which is the fraction of the superfluid mass
not coupled to the substrate. Tyler and Vavasour [8]
have described the general case of a moving substrate
together with a pressure gradient; their expression for the
acceleration of the superfluid in a porous medium moving
with velocity V,, is

vV, _ 1ap+(1 1)av,,,
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Here V, (equal to u; in the notation of AHNS) is the
average flow velocity parallel to the axis of the superleak
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and we have replaced the n? factor in the Tyler-Vavasour
result with e in anticipation of our phenomenological
description. Later, we will use V, to calculate the
pressure rise in a closed cavity into which the superleak
empties. In the absence of a pressure gradient this
equation reduces to that of AHNS; in our experiment we
have only a pressure gradient. The essential assumption
we now make, is that, as in the Kosterlitz-Thouless case,
with vortices present the factor e becomes a complex
function and depends on the flow velocity relative to the
substrate. The “bare” superfluid density is that measured
at very low velocities where only the usual static impurity
effect of the medium remains. With this generalization,
Eq. (1) can be used to calculate mass flows in our
experiment.

We now apply the ideas presented above to the analysis
of dissipative flow data obtained with a double-channel
Helmholtz resonator experiment [9]. The Helmholtz res-
onator was employed to provide an ac driving pressure
across a thin slab of porous Vycor [10] glass superleak
in parallel with an open channel. In a typical measure-
ment the resonator was held at fixed temperature while
the resonant angular frequency w and total dissipation are
determined as functions of the drive pressure AP. After
correction for the dissipation and mass flow through the
open channel, we obtain the current / passing through the
Vycor superleak. Analysis of the two-channel resonator
gives the following expression relating the Vycor super-
current to the driving pressure AP,

o(D)-(For @

A and [ are the open channel area and length, respectively,
and A, and [/, are the area and length of the superleak.
The geometry constant G = Al,/A,l and o0 = op — ioy
is the complex conductivity, where o; and o, are the
inertial and dissipative components, respectively. These
quantities are related to the measured frequency and dis-
sipation by o; = (w/®1)*> — 1 and op = (w/w))*Q";
here w, is the resonant frequency measured with the su-
perleak blocked and Q! is the dissipation attributed to
the dissipative flow through the Vycor. In the tempera-
ture range of our measurements we find that both com-
ponents of o are nonlinear functions of the supercurrent.
In Fig. 1 we show the variation of the inertial and dissi-
pative components, at fixed temperature, with a velocity
parameter, v = Iy/A, pso, Where Iy is the magnitude of
the current and p is the zero velocity limit of the super-
fluid density and includes the tortuosity of the medium.
The value of reduced temperature, t = 1 — T /T, for this
data set is 2.60x1073. At low values of the driving pres-
sure the velocity and dissipation are small and the conduc-
tance is dominated by the inertial term o;. As the veloc-
ity is increased the dissipation increases passing through a
maximum while the inertial component rapidly declines.
The data of Fig. 1 bear a resemblance to torsional oscilla-
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FIG. 1. The flow conductance coefficients o; and o, are
plotted as functions of the velocity parameter v.

tor measurements of “He films at the Kosterlitz-Thouless
transition, with the log of the velocity parameter substitut-
ing for temperature.

A more informative view of the data is given in Fig. 2
where we have plotted the dissipative component against
the inertia term for data obtained at a number of reduced
temperatures. Here the driving pressure or current can
be viewed as the parametric variable. As the drive is
reduced to zero the inertial component approaches a fixed
value o proportional to ps. An important feature of
these data is immediately evident. In the vicinity of
the o9 for each data set, the dissipative component
op initially increases linearly with the reduction in
the inertial component o;. A simple model offers an
instructive contrast. If we assume that the superfluid mass
is independent of the flow velocity while a dissipative
friction or coupling between the superfluid and the Vycor
increases with current then the values of ¢; and op
will trace a semicircular path of diameter 20;9. The
dashed curve indicates the path that would be followed at
constant superfluid density. The deviation of the actual
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FIG. 2. The conductance coefficients o; and op are plotted

against each other for a series of runs taken at fixed reduced
temperatures. The values of + X 10% are 1.05, 1.53, 2.60, 4.56,
8.56, and 16.65 progressing from left to right. The dashed
curve starting at 0.2 indicates the path followed by o, and op
at constant superfluid density.
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data from such a path indicates that the magnitude of
the superfluid density is being reduced below its zero
velocity value. The reduction can be estimated in the
context of the constant superfluid mass model and results
from real part of €, Re(e). Given the values of o(v)
and op(v) for velocity v, the zero velocity limit for the
inertial term oo(v) in this model is given by o(v) =
(6} + ob)/o; = |lo(v)|?/oi(v). Such a reduction in the
superfluid density with increasing flow has long been
known from studies of persistent currents in porous
media. Kojima et al [11] first reported a fractional
reduction as large as 1.2% in the presence of a persistent
current. This work has been extended to a greater level
of sensitivity by Carey and Pobell [12].

The quantity of interest, in our case, will be the relative
reduction of the superfluid density as a function of the
flow velocity or driving pressure. The fractional shift is
given by

8ps(v)/pso = 1 = a10(v)/10(0). 3)
From Eq. (1), for a static superleak, multiplying by

the superfluid density and superleak area we get the
expression for the current

in(I/Av) = (psO/p)AP/lv- “@
Here tortuosity has been absorbed into ps, so that e
depends only on velocity and is unity at zero flow. From
this we see by comparison with Eq. (2) that iGo =
(pso/p)e~!. Expressed in terms of the dielectric function,
the fractional shift in the superfluid density then becomes

5ps(v)/p50 =1- RC[G(U)]_I. (5)
We will postpone a consideration of dependence of the
ps shift on driving pressure and superflow velocity until a
later point.

In Eq. (4) the quantity iwe may be viewed as a com-
plex impedance (w is almost constant across the data at
1600 rads—'). The dependence of the resistive compo-
nent, w Im(e), on the flow velocity is of particular inter-
est. In Fig. 3 we plot, on log-linear scales, this quantity
as a function of the velocity parameter v defined earlier.
The resistive component has units of inverse seconds and
gives a measure of the reciprocal decay time for a persis-
tent current. It is clear that for temperatures in the range
shown in Fig. 3, a persistent current would be destroyed
within a small fraction of a second. Recent experiments
with a single channel resonator [13], with much higher
sensitivity, show the dissipation to increase continuously
from the lowest detectable velocities. The magnitude of
the flow resistance increases almost exponentially with
flow velocity indicating a rapid growth in the number and
flow of unpinned vortices. This increase is smooth and
monotonic without indication of special features such as
the dissipation maximum seen in Fig. 1. Although we do
not show it here, these data can be collapsed close to a
universal plot through scaling of the velocity parameter
v/t. This linear scaling of v and ¢ can alternatively be
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FIG. 3. The flow resistance, w Im(e), is plotted as a function
of the velocity parameter v, for the five lowest reduced
temperatures. The progression in temperature is from left to
right with the lowest temperature data on the left.

expressed in a critical transfer velocity [9] corresponding
to the saturation of the inertial component of the mass cur-
rent, close to the peak of op for which Im(e) = 1 and @
is almost constant at 1600 rad s .

In Fig. 4 we have plotted the fractional shift in the su-
perfluid density 8p;(v)/pso as a function of the flow re-
sistance w Im(€). As the flow velocity and the resistance
increase there is a rapid reduction in the value of the su-
perfluid density, however, once the 10% to 12% level is
reached, the shift is seen to saturate to a nearly constant
value. While there is a tendency of these data to move to
higher fractional shifts with increasing ¢ (with exception
of the data for ¢+ = 16.65) their close coincidence indicates
a consistent picture across the temperature range.

A possible model to interpret our results at low veloc-
ities, up to the saturation in Fig. 4, might be of vortex
loops of the effective medium generated by and respond-
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FIG. 4. The absolute value of the fraction shift in superfluid
density is shown for the six reduced temperatures as a function
of the resistance parameter w Im(e).
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ing to the flow up to a size set by a diffusion scale as
in AHNS. The importance of both dissipation and dissi-
pationless coupling of the superfluid is indicated by the
linear region at low velocities in Fig. 4. The model of
Gillis et al. [14] for strong nonlinear response in the 2D
case may be a useful guide here. Bowley and Giorgini
[15] have also considered the nonlinear response through
the whole velocity range. Gillis er al. [14] place the em-
phasis on the reduced activation energy of vortex pairs in
the presence of a finite flow with the prediction that dis-
sipation increases essentially exponentially with velocity
following the increased density of polarizable pairs. In
3D this would translate to vortex ring density. The ex-
tension of William’s model [16] has proposed a model of
interacting vortex rings in 3D; the extension of this to fi-
nite velocities may also be useful in explaining our results.
At high flows, beyond the peak of op, where Im(e) = 1,
the flow is dominated by dissipation. At the highest dis-
sipations shown in Fig. 3 the flow is approximately 75%
resistive and can hardly be called superflow at all. In this
regime we visualize almost viscous motion of a vortex
tangle, where pinning plays only a small role and a bet-
ter picture would be of a single component flow at high
Reynold’s number, essentially a state of fully developed
turbulence with the normal fluid vortex line interaction
providing a uniform drag.

We note that similar experiments using aerogel [17]
have produced similar results, perhaps suggesting behav-
ior generic to superleaks.
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