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Stripe Domain Phase of a Thin Nematic Film and the Kq3 Divergence Term
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To verify the status of the divergence K» term in the elastic theory of liquid crystals we study
submicron films placed onto an isotropic fluid substrate in the Langmuir trough (Langmuir liquid crystal,
LLC). The upper and lower surfaces favor normal and tangential molecular orientation, respectively.
The periodic domain phase is observed in a nematic LLC. The dependence of the periodicity L of the
domains vs film thickness h can be explained only if the elastic energy is accompanied by divergence
terms with nonzero constants K» and K24. It is found that for 5CB K» = —0.2Kl].

PACS numbers: 61.30.—v

Introduction Ne. —matic liquid crystal films with sub-
micron thickness h —0.1 —1 pm placed onto an isotropic
substrate represent a unique soft-matter system [1—6]. In
comparison with Langmuir monolayers the films are thick
enough to demonstrate the role of intrinsic liquid crys-
talline order in the interplay between molecular struc-
ture and macroscopic organization. At the same time, the
films are thin enough for a competition between the sur-
face and bulk properties that results in a number of very
unusual patterns [1—4,6]. The patterns are strongly in-
fluenced by divergence elastic terms in the nematic free
energy. In particular, the stripe domain structure discov-
ered in the films [1,2] was the first effect observed that
is driven by the divergence K24 term [2,5]. In this Let-
ter we show that the stripe domain phase can be quanti-
tatively described only with regard for the second diver-
gence contribution, the so-called @~3 term, which has been
for decades a source of confusion in the physics of liquid
crystals.

Divergence free energy terms which can be introduced
in the Landau-type approach to different condensed mat-
ters (e.g., liquid crystals, superfluid 'He-B, ferromagnets)
are usually omitted. Liquid crystals present a unique
situation where divergence terms are found to be in fact
meaningful. The conventional nematic free elastic energy
F2 quadratic in the director derivatives Bn,

F2= dV F —K24VnVn +n x Vxn

+ Ki3V[n(Vn)]),

contains the Frank sum fF of the standard bulk terms
(splay K», twist K22, and bend K33), and also the K24 and'
Ki3 divergence terms [7]. For a long time both divergence
terms have been disposed because of certain mathematical
difficulties (see e.g., [5]). Only recently the K24 term was
shown to give no ambiguity [8—10] and even K24 was
estimated experimentally both for nematic [6,11—13] and
smectic [14] phases. The remaining central problem of
the elastic theory is the El3 problem.

The K~3 problem derives from the fact that the func-
tional (1) is not bounded from below unless K&3 = 0
[10,15]. There is, however, no fundamental reason why
Ki3 should vanish [9,16, 17]. If K~3 4 0, then the en-

ergy can be bounded by terms of higher order in deriva-
tives [16]. If the number of the higher order terms is
finite, the theory predicts strong subsurface deformations
[9,16,18] which are rather difficult to accommodate in the
continuum approach. To avoid these unphysical deforma-
tions, it was suggested [19] that the finite-order theory is
equivalent to the conventional theory [7] where in Eq. (1)
Ki3 0 but the interfacial energy of the sample boundary
(anchoring energy) is renormalized.

Alternative infinite-order approach [10] shows, how-
ever, that the deformations can be restricted to the stan-
dard weak magnitude by the infinite sum R of all higher
order terms in the expansion of the elastic energy. The
family of the director distributions in the infinite-order
approach satisfies the Euler-Lagrange equations for the
functional F2 alone (the saine family of n was proposed
a priori in [20]). As a result, no information on the higher
order terms enters observable quantities (in contrast to
the theory [9,16,18]). Therefore, in the infinite-order ap-
proach the El3 problem is reduced to the experimental
measurement of K~3. The most favorable situation ~ould
be the one where the divergence terms are involved in the
formation of different equilibrium states, and the dilemma
K]3 0 or EC&3 4 0 could be resolved by a comparison of
experiment and theory. A most appropriate object seems
to be a hybrid aligned nematic film with azimuthally de-
generate boundary conditions [1—5].

In a hybrid film, n depends on the coordinate z
normal to the film since the surfaces favor different
alignments. The homogeneity of the problem suggests
that n is independent of the in-plane coordinates x
and y (homogeneous state, HS). However, this naive
translational symmetry of the HS can be spontaneously
broken by the K24 term [2,5] and the stripe domains
(SD's) are formed for sufficiently thin films; these in-
plane distortions cost no azimuthal anchoring energy since
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the ambient media (fluid and air) are isotropic. The
domain periodicity L is very sensitive to the film thickness
h [2], K24 [5], and, can be expected, to Ki3, too.

A quantitative study with spreading films was impos-
sible because of the nonflat film profile [1,2,6]. In the
present experiment using the Langmuir technique, we
have succeeded in preparation of thin and flat nematic
films which we denote Langmuir liquid crystal (LLC)
films. The most important result is that the experimental
spectrum L(h) can in no way be explained if Ki3 = 0. We
found K|3 = —0.2K» for 5CB (pentylcyanobiphenyl).

Experiment. —The LLC films were prepared in a clean
room (class 100). The Langmuir trough 601M (Nima
Technology Ltd. ) was filled with glycerin (99.5+% purity,
Aldrich Chemical Company, Inc.). Liquid crystal 5CB
(EM Industry, Inc.) was dissolved in hexane (99+%
purity, Aldrich). The solution was overlaid on the glycerin
surface using microsyringes. Films of 5CB formed after
evaporation of the solvent. The thickness h of the film
was calculated from the concentration and amount of the
solution and the surface area of the film. Using different
amounts of solution and moving the barriers of the trough
we changed h in the range 0.14—2.0 ~em. The trough was
covered to prevent contamination and mounted on the stage
of polarizing microscope. The temperature was fixed at
23.5 ~ 0.3'C.

The film was hybrid alignment since the glycerin
favors tangential orientation, while the free surface of
5CB sets normal orientation [21]. We independently
measured the Rapini-Papoular anchoring coefficient W2

at the 5CB free surface using a 2-mm thick nematic
sample and employing the method described in [22]:
Wz ——(1 ~ 0.5) X 10 ~ I/m .

%ithin the range h = 0.14—0.49 p,m the nematic LLC
films have periodic-in-plane distortions of n (SD s) simi-
lar to that described for nonflat spreading films [1,2]. The

difference is that the periodicity L of the SD s in the
LLC's is nearly uniform for the same film as wel1 as for
different films of equal h, (Figs. 1 and 2), while in the
spreading films with nonflat profile [1,2] L varied from
point to point by more than 20 times.

The experimentally measured SD period L is a mono-
tonically decreasing function of h (Fig. 1) and exhibits the
critical thickness h,. = 0.49 p,m that restricts the range of
the SD phase from above in accordance with theory [5].

Although the SD phase is attributed to a geometry
with essentially submicron scale, h = 0.14—0.49 ~~,m, its
manifestation is detected at supramicron scales 5 ~ L ~
200 ~im. The supramicron L allows one to disregard the
flexoelectric interaction between the domains since the
Debye screening length (-O. 1 —I ttm [23]) is considerably
smaller than L and the flexopolarization is screened.
Another very important advantage is the smallness of the
dimensionless wave number g = 2n. h/L, the only small
parameter in the theory [2,5] of the SD phase: the largest

g = 0.15 occurs for h = 0.14 I~m, while for h ~ 0.2 I~,m
one has g ~ 0.05.

Theory. —Let us consider the nematic layer parallel to
the (x, y) plane and normal to the - axis. The lower
z = 0 ("1")and upper z = h ("2") surfaces impose, re-
spectively, tangential and normal orientations degener-
ate in the (x, y) plane. In the standard parametrization
n = (sin8 costIi, sin8 sin~I', cos8), where 8 is the angle
between n and the z axis, and 4& = ratca(nn~/ n), the
HS is described by 8 = 8(z), 4 = 0. If the anchoring is
stronger on the tangentially orienting surface (Wi & Wz),
and the film is thinner than h, = (L2 —I &)(I —p&) [24],
then the HS is undistorted in the vertical plane: 8(z) =
m. /2 [25]. Here L, = Kil/Wi, L. = Kl~/W2, and p~ =
2Ki3/Kl i.

In the approximation K&~ = K33 the HS is completely
determined by the formula 8(z) = (8. —81)z/h + 8~,
where 8&, 8z are the solution of the system [10]

h
2(82 —8, ) + —sin28q = p~ (8q-

L2

h
2(8~ —82) ——sin28i = p& (8i-

Li

1 . j
8i) cos282 + —, sin282 —

2 sin8~

] [
8~) cos28~ + z sin28i ——, sin28q

(2)

For sufficiently small h the HS becomes unstable with
respect to SD's with periodic perturbations Bn in the
form 88 = g, fi(z) sin(qly), 4 = g, gI(z) cos(gly) [5].
Though Bn contains two twists (about the z and y axes),
the SD's appear for any value of t = K22/Kl i (in contrast
to the periodic Freedericksz effect [26] that requires
small t) and are driven by the K24 mechanism of chiral
symmetry breaking [2,5]. The whole SD spectrum was
shown [5] to be long wavelength (g « 1) if t ) 0.5. It
is just our case: in the experiment g « 1, and t —0.6 for
SCB [27,28].
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The transition HD-SD is of the second order and for

y « 1 can be described by the functional F{G(u)) [5],

Ki]
4m

du(~'aaG" + ~'(PG"' + gG'G')],

whose coefficients A, D, P, Q are uniquely determined

by the solution 8i, 82 of Eqs. (2); u = 2my [5]. The per-
turbations are related to the function G(u) and its deriva-
tive G' as 4 = yG + O(g ), 88 = —g (ti —Pz)G' +
O(g4), where a and P are 8~ 2-dependent constants [5].
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The presence of the K~~ term affects the dependence
8& 2(h) which can be obtained from Eqs. (2) numerically
both for K~q = 0 and K~q 4 0.

Functional (3) describes a periodic nonlinear wave G(u)
[5] with the wave number

g = 2m b/L =
3I

—13.4D2/3P, (4)

where the coefficient 0.4 results from nonlinear interaction
of the harmonics.

The spectrum g(h) exists when D & 0 since A ) 0,
P ) 0 [5]. Hence D & 0 and D ) 0 correspond to the
SD's and HS, respectively [5]. The inequality D & 0
holds for h & hD, where hD is defined by D(hD) = 0.
The second restriction comes from Eq. (3): the SD's
with g «1 do not exist for Q ~ 0 since in this case
minF[G(u)) COrreSpOndS tO g DD. The inequality Q )
0 takes place for h & hg, where h~ is

defined

b Q(h~) =
0. Thus the upper boundary h, of the long-wavelength
SD phase is obviously h, = min(h&, h&). If hD & h~
and thus h, = h~, than at the right end of the spectrum
L(h) DL y ' diverges as (ho —h)

' which is illustrated

by curves 1 —3 in Fig. 2(a), and 3—5 in Fig. 2(b); if hz )
h~ and hence h, = h&, then L(h) drops down abruptly,
see curves 4,5 in Fig. 2(a), and 1,2 in Fig. 2(b). There
is another region, h —h, where the dependence L(h)
becomes steeper [5]. In the experiment such steeping is
observed at the left end of the spectrum (Fig. 2) which
implies that h ~ 0.15 pm.

The cause for the long-wavelength SD's is the term
in the free energy which functionally coincides with the

FIG. 1. Stripe domain (SD) phase of a nematic (SCB) film
placed on the glycerin substrate for different thicknesses h:
(a) 0.44 tLm; (b) 0.32 tLm; (c) 0.16 i/m The le. ngth of the
short side of the figure is 240 /(, m.
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K24 term [2,5] and is proportional to p~~
=

[ I —(2K24 —K&z)/K» i. Therefore, the larger p~~

the broader the range where SD's exist. However, if
large p~~ favors SD's with large g, it might actually nar-

row the range of the long-wavelength SD's with g && 1.
Indeed, an increase of pt~, L~, and L2 results in some
increase of hD. At the same time, however, it causes a
substantial decrease of h~. As a result, the upper end h,
of the long-wavelength spectrum is essentially bounded.
The maximum possible h, obviously corresponds to
h, = hg = ho [curve 2, Fig. 2(b)]. Negative K~q favors
a growth both of h~ and h~, and thus of h, .

The experimental data L,„~(h)enables one, in principle,
to find not only K&z, K24, W& which are not known
but W2 as well which can be compared with W2 p.
Note that since the temperature of the film is 10 K
below the nematic-isotropic transition point TN I, one can
disregard the effects related to variations of the scalar
order parameter.

Comparison of the experimental and theoretical spec
tra. The parameters of the—theoretical curve L(h) are L2,
h, (or L~), p~~, p3, and t; K~~ enters only the factor of
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FIG. 2. (a) Experimental dependence of the period L of the
stripe domain phase as a function of film thickness. Curve
1 is the best theoretical fit to the data with Kl3 = —0.205Kll
while curves 2—5 correspond to small variations of K~3'. 2,
—0.195; 3, —0.200; 4, —0.215; 5, —0.23; in all cases h, = 0.06
/(, m, p~i

= 1.0, L& = 0.76 /(, m, L2 = 0.86 /(m, and t = 0.63.
(b) Theoretical curves illustrating the efforts to fit the data for
ECi3 0, calculated for 1, h, = 0.09 /(. m, L2 = 1 /(m, p~i

= 1 .6;
2, h, = 0.09 /(, m, L2 = 0.7 /(, m, p~~

= 1.2; 3, h, = 0.09 /(m,
/'m p((

= 1.187; 4, h, = 0.35 /(, m, L2 = 0.7 /(, m,

pi]
= 1.o; 5, h. = o.35 /(m, L2 = 7 /(m, pi] = o.9.
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the total free energy and does not affect L(h). First we
numerically solved Eqs. (2) to obtain their solution 0~, 82
as a function of the parameters indicated. With known
0~, 82 we obtained A, D, P, Q, h0, hD and calculated
the spectrum L(h) from Eq. (4).

We found that variations of t about 0.6 affect the
spectrum only slightly. Numerical calculations show that
the principal problem is to fit to the experimental data at
both ends of the spectrum. Our first idea was to reproduce
L pt(h) for Kj3 = p~ = 0. We found it impossible.

(1) K(3 = 0, Fig. 2(b). For h, from the interval
0.05 & h, & 0.1 ~~m the theoretical curve L,h„,(h) can be
made very similar to L,„~,(h) at its left end. However,
these values of h, are too small to reach h, —h, ,„p,=
0.49 ~~,m. Indeed, for L2 = 1 ~~,m, h, = 0.09 p, m, p~~

=
1.6 (curve 1) we have a satisfactory fit to L,„~,(h) for
h & h~ =- 0.2 ~em, but above h = 0.2 pm the SD's do not
exist at all. For larger p~~ and L2 the value of h~ is even
smaller. Though h~ increases as p~~ and L2 decreases
(curve 2), this growth is accompanied by a decrease of
hz. At last at p(( = 1.2 a very small decrease of p(( (from
1.2 for the curve 2, to 1.187 for the curve 3) makes
h~ & h~, and the end A, of the spectrum appears at h~
rather than at h~. Thus, for h, —0.1 p,m a maximum h, ,

is only =0.33 p, m which corresponds to curve 2. On the
other hand, we can reach hg & hD & 0.49 Jam by taking
h, considerably larger than h, ,„~,~ 0.15 pm (curves 4
and 5), but such spectra differ drastically from L,„~,(h).
If W2 —W2,„~,(curve 4), then L,h„„&&L,„~,. To get a
satisfactory fit at least for h —(0.4 —0.5) pm, one must
allow for W2 an order of magnitude larger values than

Wz,„p,(curve 5). Since curves 1 —5 represent the best fit

possible for p& = 0, we have to conclude that no values
of the parameters L~, L2, p~~, and t allow one to reproduce
L,„~,(h) even roughly when Kj3 0.

(2) K(3 4 0, Fig. 2(a). For K~3 & 0 we find a nar-
row range of p&, p((, Lz, and h„where L,h„,(h) fits

L,„~,(h) well: —0.46 ~ p~ ~ —0.36 (i.e., —0.23 ~ K~3/
K)( ——0.18), 0.95 ~ p(( ~ 1.05; 0.7 ~ L) ~ 0.8 pm,
0.8 ~ L2 ~ 0.9 ~em; 0.6 ~ t ~ 0.7. The best fit is
achieved for p& = —0.41, p~~

= 1.0, L j
= 0.76 ~~,m, L2 =

0 86 ~sm, and t = 0 63, curve 1. For this curve
h, = h~ = 0.49 I~,m while h& = 0.50 p,m. Other
curves in Fig. 2(a) illustrate a high sensitivity of the
theoretical curve to small variations of K~3. In terms
of the original variables the best fit corresponds to
K]3 = —0.205'~ ~, K22 = 0.623K~ ~, and the two values
of Kz4, K24 = —0.10K~~ and K24 = 0.90K~~ (notice that
Kq4 = 0.90K~~ is very close to the results of Refs. [6,11—
13]. Taking K~~ = 6.3 && 10 '2 N [27] we obtain also
the anchoring constants W~

——8.3 X 10 6 J/m and

W2 ——7.3 X 10 6 J/m2; the latter agrees with the experi-
mental finding, W2 = (10 ~ 5) X 10 6 J/m .

In conclusion, the preparation of the nematic LLC's and
the measurements of the SD period vs film thickness have
allowed us to verify the elastic theory of the SD phase
that incorporates both the K~3 and @24 terms. The data
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can be explained only for K]3 4 0: K)3 = —0.205K))
provides a very good description of the experiment;
deviations from the range —0.23 ~ K&3/K~ ~

~ —0.18 lead
to a substantial disagreement with the experiment; for
Kj3 0 the disagreement is drastic.
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