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Dynamics of the Sawtooth Collapse in Tokamak Plasmas
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Fast reconnection such as driven by electron inertia qualitatively changes the Kadomtsev picture of
the sawtooth collapse in tokamak discharges. The collapse occurs in two steps, a fast Kadomtsev-type
reconnection followed by a rapid reformation of a qo & 1 configuration. The latter is driven by the
strong flows generated during the Kadomtsev phase. The theory provides a natural explanation of the
main experimental observations including the snake phenomena.

PACS numbers: 52.55.Fa, 52.30.—q, 52.35.py

The nature of the sawtooth collapse in tokamak plas-
mas has been a major puzzle since the observations of
Soltwisch [1] on the TEXTOR tokamak indicating that
the central safety factor qo remains well below unity
after the collapse. Initially qo —0.75, and the change
Aq during the collapse is small, Aq ~ 0.1. This be-
havior has since been corroborated by observations on
several different devices [2,3] under various different dis-
charge conditions. In the standard theoretical model by
Kadomtsev [4] and its variants full reconnection of the
helical flux inside the q = 1 surface takes place, bring-
ing qo above unity. Efforts to reconcile this model with
the observations have not been successful. The prevailing
view is that full reconnection does not occur. Instead re-
connection ceases after the m = 1 magnetic island reaches
a finite amplitude. This partial reconnection model suffers
from two distinct problems: (a) Why does reconnection
halt and (b) if it does halt, how can the thermal energy in
the nonreconnected region be released? While toroidally
induced field line stochastization can provide a plausible
energy escape process at least for the electron thermal
energy [5], no mechanism has been found to stop the dy-
namics before full reconnection has occurred. Solutions
of the full compressible resistive magnetohydrodynamics
(MHD) equations in toroidal geometry [6,7] show m = 1

dynamics very similar to the original Kadomtsev reduced
MHD model. There are in fact arguments [8,9] that the
nonlinear reconnection process should become indepen-
dent of the actual MHD free energy, for instance, in the
presence of an ideal MHD instability. In addition, the
recent tomographic analysis of the electron temperature
distribution on the TFTR tokamak exhibits a sequence
of states that are amazingly similar to a Kadomtsev-type
full reconnection process. The collapse time, however,
is much faster than predicted for resistivity dominated
reconnection. Although the soft x-ray emission during a
typical sawtooth collapse on the JET tokamak exhibits a
"hot crescent" instead of a hot shifted circular core, there
is no indication that the reconnection is not complete.

An alternative interpretation of the experimental ob-
servations has recently been suggested by Kolesnichenko
et al. [10]. These authors point out that Kadomtsev's

equations allow more general solutions than the one
discussed by Kadomtsev, permitting also qo & 1 in
the final state. The initial and the final q profiles can
even be identical. Such solutions require, however,
two distinct reconnection processes, where the second
(partly) reverses the effect of the first. The authors,
however, admit that they cannot provide a mecha-
nism for the second reconnection. In fact, numerical
simulations in the framework of resistive MHD at
low values of resistivity do not reveal any indication
of such a secondary process. Because of insuffi-
cient time resolution in the measurement of q(r), the
expenmental observations cannot distinguish between
partial reconnection and full reconnection followed
by a rapid partial reversal. The statistical analysis by
Soltwisch [1] seems to rule out a purely diffusive process
as caused by neoclassical resistivity [7]. (However, such
a process could add to the efficiency of the mechanism
described in this Letter. ) The emergence of the snake
[11,12], a helical filament of high plasma density local-
ized at the q = 1 surface, intact after the sawtooth crash,
is, moreover, apparently evidence in favor of partial
reconnection. Because of these observations and the lack
of a plausible mechanism for the second reconnection, the
two-stage model has not been widely accepted.

In this paper, we show that the two-stage reconnection,
with qp & 1 at the end, is a natural consequence of
fast reconnection in high temperature tokamak plasmas.
The critical ingredient is the kinetic energy of the flow
generated during the first Kadomtsev-type reconnection.
We first estimate the kinetic energy available at the end
of a resistive Kadomtsev reconnection using the well-
known properties of the Sweet-Parker layer. The bulk
inflow velocity is U —g'/ vA corresponding to an energy
-g, which is negligible. Here VA is the Alfven velocity
of the helical field 8 in front of the sheet, and g is
the (normalized) resistivity. The kinetic energy resides
primarily in the poloidal flow which is ejected at high
velocity V —VA from the resistive layer of width 8—
g ~ r, and length L —r, with r, the radius of the initial

q = 1 surface. At the end of the Kadomtsev reconnection
the total kinetic energy remaining in this poloidal flow
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is -V&L6 —g'/2, which is again small. In fact most
of the magnetic energy liberated during the Kadomtsev
process is dissipated Ohmically. Since j —B/8 —
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the rate of Ohmic dissipation is -gj I.B —g'/ . The
reconnection time is 7 —U ' —q '/2. So the total
Ohmic dissipation is -1. These scaling laws explain
the results of resistive simulations, that the dynamics
essentially stops after the Kadomtsev reconnection phase,
leaving the system with an extended central region with
q~ l.

Recently nondissipative effects in Ohm's law, electron
inertia [13] possibly combined with electron pressure
gradient [14], have been shown to give rise to different
m = 1 mode reconnection dynamics characterized by a
rapid nonlinear increase of the reconnection rate. Under
conditions where dissipative processes (resistivity i1 and
electron viscosity p, ,) are sufficiently weak such that the
reconnection is dominated by the nondissipative effects in
Ohm's law, most of the magnetic energy is transformed
into kinetic energy. Typical tokamak plasmas fall in this
regime [1—3]. Hence at the end of the first reconnection
the system carries a strong convective plasma low. It is
this flow which leads to a partial inversion of the helical
flux distribution and a final q value distinctly below
unity. These arguments are substantiated by numerical
simulations. To demonstrate the principle we restrict
consideration to the simple reduced equations for the
helical flux function P and the stream function
including electron inertia,

B,p + v . V(p = d (B,j + v Vj) —p, V j, (1)

BOP +V VM 8 VJ PQ)

(c)

(e)

(b)

B=zXVQ, v=zXVQ,
j=VQ+2, cu=VQ,

written in conventional dimensionless form with d =
c/cu„,r„p., a phenomenological (perpendicular) elec-
tron viscosity representing the effect of weak field-line
stochasticity [15] and/or current density gradient driven
whistler turbulence [16], and v a friction coefficient due

to magnetic pumping or some flow instability. Fig-
ure 1 illustrates the time evolution of the helical fIux

f(x, y) of a simulation with the initial current profile

jo(r) = (2/qo)(1 + r2/ro), qo = 0.67, d = 0.02, and

p, , = 10 . A friction coefficient v = 0.05 was switched
on after the flow energy reached its maximum value simu-

lating the onset of a shear flow instability. Figure 1(a)
gives the initial flux distribution. The nonlinear evolution
starts at r = 1100 and the Kadomtsev phase, Fig. 1(b),
terminates at t = 1230. The dynamics resembles that
of the resistive Kadomtsev process (except for the time
scale). The current sheet, which forms at the X point,
gradually decays due to dissipation by electron viscosity.
Following the Kadomtsev phase the strong flow pulls the

helical flux back into the central region [Figs. 1(c)—1(e)].
Finally, secondary reconnection leads to a partial reforma-

FIG. 1. Simulation of the time evolution of the helical flux
function in the sawtooth collapse taken at t = 0, 1200, 1230,
1248, 1266, and 1350, showing the Kadomtsev reconnection,
the reversal of the Kadomtsev process, and the secondary
reconnection regenerating an almost symmetric configuration
with qo & 1.

tion of the initial sheared state with qo ——0.75 [Fig. 1(f)].
Figure 2 gives the current density distribution showing the
current sheets corresponding (a) to the Kadomtsev recon-
nection and (b) to the secondary reconnection. Note that

in the first case j is negative compared with the equilib-
rium current direction, while it is positive in the second
case. Several points are noteworthy.

(a) The dynamics illustrated in Fig. 1 leads to the

formation of an extended shear-free belt of q = 1 around

the sheared central region. Such a flat q belt has a
strongly stabilizing effect on the m = 1 mode [17]. Thus,

the final state with q ~ 1 remains and does not begin a
second Kadomtsev-type reconnection leading to q ~ 1.

(b) Because of this broad q = 1 belt in the final state

only part of the magnetic energy set free during the

Kadomtsev phase is reinvested in the formation of the

final magnetic state, even if qo is not much different from
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(b)

FIG. 2. Current density distribution corresponding to
Kadomtsev reconnection t = 1200 (a) and secondary reconnec-
tion t = 1302 (b).

its original value. Hence there is an excess of kinetic
energy.

(c) In the simulation run presented in Fig. 1 a damping
of the flow is needed to prevent the collimated flow
across the center evident from Fig. 1(e) from driving
reconnection at its head, thus splitting the flat q region
into two parts. Subsequent sloshing and reconnection
would further fragment the helical flux distribution into
smaller pieces (islands) eventually leading to an average
flat q profile. Sufficient damping could be generated by
a Kelvin-Helmholtz instability of the sheared flow. The
necessity of an efficient flow damping is, however, less
stringent if we start from an initial q profile slightly
flattened about r = r„aswould be expected in a self-
consistent simulation of the full sawtooth cycle. In this
case a state corresponding to Fig. 1(f) is generated even
without flow damping. The corresponding q = 1 belt
surrounding the central q c 1 region is also broader.
Though the remaining flow energy must be ultimately
dissipated, the evolution of P does not sensitively depend
on this damping. Even magnetic pumping should suffice
in this case.

(d) The system returns only slowly to a fully axisym-
metric state, corresponding to a slowly decaying helical
perturbation, which can be associated with the postcursor
oscillations observed after the sawtooth collapse.

It should be noted that a morphologically very similar
process occurs in the ideal m = 1 instability of a low-q
nonreversed-field pinch configuration [18,19]. Starting
with a nonresonant configuration qo ( 1/n [19], where
n is the axial mode number, the system evolves into
a reversed-field configuration with qo ~ 1/n, mainly by
increasing 8, in the central region. In the case of the
flux reversal phase on the sawtooth collapse in a tokamak,
the plasma is also nonresonant, qo ——1, at the beginning
and evolves into a resonant state, qp ( 1. The main
difference is that while in the low-q pinch case the system
is strongly unstable, in the tokamak case the system is
stable before the reversal process, the latter being driven
by the strong flows present. While in the pinch the final

state is stable owing to the reversed B, field in the outer
region, it is stable in the tokamak case because of the
extended shear-free q = 1 belt around the central region.
We should, however, note that because of the dense

spacing of resonances in the reversed-field pinch, a single
helicity behavior is not likely, while it dominates in the
tokamak case.

Finally, we want to discuss qualitatively how the appar-
ent survival of the snake during the sawtooth collapse can
be reconciled with this picture. We claim that the snake,
instead of remaining intact, breaks apart and then reforms.
Since the density blob forms a substantial helical pertur-

bation, it almost certainly controls the poloidal phase of
the collapse dynamics. The symmetry of the equations
(in the absence of diamagnetic drifts) implies that two
situations are possible as indicated in Fig. 3. The current
sheet forms either at the location of the snake [Fig. 3(a)]
or just across from the snake [Fig. 3(b)]. In the latter
case the snake could survive the collapse but its position
would suffer a phase shift 58 = m. . In the former case the

snake splits, is transported along the sheet by the plasma
flow, reforms in the center, and then shifts back to the
original side. Hence there is no phase shift. Experimen-
tal observations [11]indicate that there is no phase shift,
thus favoring the fragmentation and reformation picture.
The long-time persistence of the snake requires a strong
process of density condensation which should also be ac-
tive after the fragmentation of the snake during reconnec-
tion. This picture of the snake behavior assumes that the
sawtooth dynamics is not affected by the presence of the
snake. It can, however, not be excluded that the dynam-
ics is changed, since the density perturbation of the snake
is much larger than the density change as a result of the
sawtooth collapse.

In conclusion, we have presented a mechanism, sup-

ported by numerical simulations, of rapid reformation of
a qp & 1 configuration after full Kadomtsev-type recon-
nection in the sawtooth collapse. This solves a long-time
puzzle in the understanding of the sawtooth collapse: How

(a)

(b)

FIG. 3. "Survival" of the snake in the collapse. (a) Recon-
nection starts at the location of the snake. After the cycle is
complete, the snake is shifted radially inward compared with
its precollapse position. (b) If the snake is located on the
opposite side, the snake remains intact during the collapse, but
its poloidal location suffers a phase shift m.
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can q remain below unity after the crash? The collapse
occurs in two steps as has recently been suggested by
Kolesnichenko et al. [10]. The important new ingredi-
ent is the high speed flow which results from fast weakly
dissipative reconnection in high temperature tokamaks.
The reformation of a region with q ( l does not oc-
cur during the much slower resistive reconnection, where
most of the free magnetic energy is Ohmically dissipated.
The two-step process provides a natural explanation of
both the T, tomography and the observation of qo ( l,
though it will be very difficult to observe the second step
process directly in the experiments, since T, has been
essentially Ilattened by that time. The mechanism can
also be reconciled with the apparent survival of the snake
during the sawtooth collapse.
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