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Intermittency in Fully Developed Turbulence: Log-Poisson Statistics
and Generalized Scale Covariance
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Some properties of a model of intermittency in fully developed turbulence due to She and Lévéque
[Phys. Rev. Lett. 72, 336 (1994)] are explored. The probability functions solution of the model is
shown to be simply related to the log-Poisson statistics of local nondimensional energy dissipation.
It is also shown that the intermittency obtained by She and Lévéque can be interpreted as the
consequence of the scale covariance of the energy dissipation. Based on these observations, a new
picture of turbulence is presented, in which scale covariance plays a central role.

PACS numbers: 47.27.—i

In 1941, Kolmogorov (hereafter K41) conjectured the
existence of a universal state in fully developed turbu-
lence, in which the velocity differences §v; across a dis-
tance [ have a simple scaling behavior when [ is in the
inertial range:

8y ~ 1%, G =% (1)
Experiments and numerical simulations do not, however,
support this conjecture. There is growing evidence that
¢p substantially deviates from the linear K41 law at large
p, a phenomenon often referred to as intermittency cor-
rections. Paradoxically, there is also an indication that
fully developed turbulence is more universal than thought
by Kolmogorov. Benzi et al. [1] showed that scaling prop-
erties of the velocity increments can be extended up to
the dissipative range under the form

(6v]) ~ (6v7)%/%, 1> 5, 2
where 7 is the Kolmogorov scale. This property, referred
to as extended self-similarity, is observed even at mod-
erate Reynolds number. Extended self-similarity allows
significant improvement in experimental measurements
of {, by extending the range of scales over which self-
similarity holds, thereby providing a clear and unambigu-
ous evidence for intermittency.

Many models have been proposed to explain the in-
termittency in {,. The most famous are the log-normal
model (the distribution of the energy dissipation is log-
normal) [2,3], and the multifractal model (the energy dis-
sipation has a multifractal measure) [4]. More recently,
She and Lévéque [5] (hereafter SL) have proposed a sim-
ple model, which leads to a prediction of ¢, in excellent
agreement (1%) with experimental results (see Table I of

The model is based on three simple hypotheses:

(i) The Kolmogorov refined similarity hypothesis is
used: (6v7) ~ IP/3(e} /3 where ¢ is the energy dissi-
pation averaged over a ball of size .

(ii) “Hidden symmetry”: The moments of the energy
dissipation obey a hierarchical structure, given by

6p+1 &P B8
da) >—Ap( {er) )),0<ﬁ<1, (4)

&) T\ g

where A, are geometrical constants and e§°°) =

limp_, oo (€] +1y/ (€7) is a quantity tracing the tail of the
distribution of ¢;, corresponding to very intermittent
structures. SL postulate that the hierarchy originates
from some hidden symmetry of the Navier-Stokes equa-
tions. This hypothesis has not yet been checked on real
turbulent data. However, using a closure model, Benzi (6]
showed recently that the hierarchical structure also holds
in the GOY shell model [7], the simplest local determin-
istic approximation to Navier-Stokes equations which re-
tains energy conservation and scale invariance. We later
show that the hidden symmetry can be interpreted as
generalized scale covariance, and that 3 is characteristic
of the intermittency of energy dissipation.

(iii) The quantity e§°°) appearing in (4) is associated
with the most intermittent dissipative structures and
shows a divergent scale dependence: e§°°) ~I1%asl—0,
where A is a parameter depending on the codimension of
the dissipative structure. The divergence property is de-
rived by SL from interactions between the filaments and
the surrounding fluid, which gives A = 2/3.

Hypotheses (i) through (iii) guarantee that év; obey
the scaling

SL). It is (6uP) ~ 10=D)p/3+A(1-F7/)/(1-B) (5)
p/3

b= Do [1 — (2) ] (3) The fit of structure functions in isotropic 3D turbulence

9 3 (SL model) requires A = 8 = 2/3, which is obtained if
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the most intermittent structures are filaments (of codi-
mension two). The success achieved by this simple model
is remarkable, even though hypotheses (ii) and (iii) still
require experimental support or theoretical confirmation.
The model therefore deserves further investigation. In
this paper, we show that it is characterized by certain
remarkable properties which may open new insights in
our understanding of fully developed turbulence.

Log-Poisson statistics.—We introduce the nondimen-
sional energy dissipation m; as

€
™ = m . (6)
€

It may then be checked that the moment hierarchy (ii)
implies that

B —BP)/(1—
(n7) = Wﬁﬁl)(l BP)/(1=B) (7)
1

where B, are geometrical constants. This relation be-
tween moments is satisfied by a whole family of prob-
ability distribution functions. The members Py (m)
of this family can be expressed simply as a function of
Y = log m/ log B8 according to

Pyy(m)dm = Fy)(Y)dY,
Fa(Y) = / Poissons(Z)G(Y — 2)dZ, (8

where Poisson), is the Poisson distribution of expectation
A and G is any probability density function. The geo-
metrical constants B, appearing in (7) are then simply
related to the Laplace coefficients of G via

+o0
B, = / ePY "BG(Y)dY. (9)
0

From the expression of the first moment, it can be seen
that the parameter A is proportional to In(m;).

Reciprocally, given the set of coefficient B, and the pa-
rameter 3, one may find the function P, (;y of the form (8)
which satisfies (7) by suitable Laplace transform. There-
fore, the family of probability density functions defined
by (8) are the general solutions of the moment hierarchy.
Note that when 8 — 1, the Poisson distribution tends
to the Dirac function, and the family of functions is sim-
ply given by Pyuy(m) = G(m/(m))(m)~!, which is the
general form of purely hierarchical probability density
functions (such that (n*) o< (m)™).

The simplest solution of (7) is obtained for G(Y) =
6(Y). In that case, B, = 1 for all p, and m has a log-
Poisson statistics. We shall see later that the log-Poisson
statistics [and all the members of the family (8)] are char-
acterized by special scale-covariance properties. In addi-
tion, it is interesting to note that the Poisson distribu-
tion occurs generally in connection with discontinuous
random processes [8] and is the natural limit of a wide
class of statistical distributions involving “rare events”

960

(e.g., maxima of sequence of normal variables or cycle of
mapping) [9]. The best example is given by the binomial
distribution, the distribution of successes in a sequence
of n independent trials, each with a probability = of suc-
cess. If the number of trials tends to infinity, and z stays
finite, the binomial distribution approaches the normal
distribution. However, if the probability z is very close
to zero (rare event) and A = nz is finite, the binomial
distribution is very closely approximated by a Poisson
distribution of expectation A.

In this context, it is of interest to point out that the log-
Poisson distribution can be obtained from the random g3
model [10] by a suitable limiting process. Specifically,
the random (3 model is a modification of the 3 model of
Ref. [11] in which the space-filling factor for offsprings
takes two possible values, 3; and (3, with probabilities
r and 1 — z. In the 8 model, the random cascade factor
between scales i + 1 and ¢ noted W = €;41/€, takes only
two values, 0 with probability 1 — 8 and 1/8 with prob-
ability 8. Hence, in the random [ model, W takes three
values:

0 with probability 1 — 1z — Ga2(1 — ),

1/p1 with probability 3;z,
1/B, with probability 82(1 — z).

W =

(10)

In addition, the random B model has a free parameter
0 < T < 1, the ratio of successive scales. It is easily seen
that () ~ I™, with 7, = log(W?)/logI'. Let us now
consider a family of random 3 models in which x — 0
and in which T, 81, and (32 are functions of z and two
additional parameters 0 < 8 < 1 and 0 < A < 3, given
by

I =exp [—M]; B =B'T4; B =T (11)

Ap
A straightforward calculation shows that, for x — O,
7 — —pA + A(1 — BP)/(1 — B), so that m has the log-
Poisson form (7). This computation explicitly shows that
the 3 parameter is a measure of the intermittency of en-
ergy dissipation [see (11)] and that A is linked to the
codimension of the dissipative structures.

Generalized scale covariance.—We now show that the
moment hierarchy (4) can also be interpreted in terms
of covariance by a generalized scale transformation. For
this, we recast (4) in an equivalent form. We may first
note that, under its present form, the SL model does not
account for extended self-similarity. This is because it
explicitly involves the resolution scale . However, if we
recast hypotheses (i) and (iii) in terms of a “generalized
scale” £(1) = {(e;)~*6v}), the SL model can become fully
compatible with extended self-similarity. Hypotheses (i),
(ii), and (iii) then should be recast as

b0 seal &1 _ M (12)
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1 . .
where "2 means we have the same statistical properties
as far as scaling is concerned,

(xPtly () \?
(n?y A’”(w—l)) ’ (13)
and
(ﬂ-) — (6_[) — (@)A (14)
YT \n(ed )

Note that (12) has been already checked on real turbu-
lent data [6]. Combination of Egs. (12), (13), and (14)
guarantees that the moments of the velocity increments
obey the relation

(6v]) ~ (6v2)%r/<, (15)
with
S _ P, B g
4—:—(1—A)3+1_ﬂ(l pr’3). (16)

One recovers therefore both extended self-similarity, and
the SL model for (3 =1 and A = § = 2/3. Note, how-
ever, that this model could possibly be used in situations
where (3 is not equal to unity. In such a case, only the
relative scaling exponents should follow the SL formula.
This has been recently checked on a class of shell models
[12].

The property of extended self-similarity suggests that
scaling properties in turbulence should not be investi-
gated as a function of [/, the resolution scale, but rather
as a function of the generalized scale £(l,n), which may
be simply taken as n(m;) thanks to (14). This is reminis-
cent of critical phenomena in finite size systems, in which
all the scaling properties are considered as a function of a
correlation length, which depends on the size of the sys-
tem, and diverges at the critical point. Our equivalent
formulation of (4) is inspired from this remark. Indeed,
as in SL, we now consider the following weighted proba-
bility density function:

i} P(m)

) = Tt Pl

(17)

where P(m;) is the probability density function of m;. We
may then define the p average of m; as

7Tn+z7>
)= [arQumian = T, ag)
(1)
where () is the average done using P(m). We now in-
vestigate the scaling properties of the @, with respect to
the generalized scale £,(l) ~ (m)p. Since in the inertial

range all (m;), are power laws in the same variable [, they
satisfy

(mf)p o (m)f,("”’) for all n, p. (19)

Here, the {(n,p) are functions of n and p to be deter-
mined. By definition, {(1,p) = 1 for all p. Note that
this formulation explicitly considers the scaling in &,(1)
instead of ! and uses relative exponents, in the spirit of
Eq. (15).

Straightforward manipulations on (n]*), using the def-
inition of Qp(m;) show that the {(n,p) are necessarily
linked by a simple recursion relation:

¢n+1p-1)=((mpl2p-1)-1+1.  (20)

This relation is valid for any “scaling system.” However,

the SL moment hierarchy amounts to assuming that the

function {(p,n) is independent of p. Indeed, in this case,
the solution of (20) can be obtained exactly as

1-p .

((pm) = ((n) = 7=, with B=((2) - 1,

=n if¢@2)=2(F=1). (21)

In the present case, this p independence can be inter-
preted as stemming from covariance by a scale trans-
formation. Indeed, it may be checked that the general
family (8) of solutions of the moment hierarchy are such
that

Pyaypr (m)dm = Fqype (Y)Y
e’ " Ry (Y)
= B——————dY
? (m?)
= BpQua),p(m)dm. (22)

Here, the notation Q) (;y,, was used to define the weighted
function of Py ;) of order p. If one assumes covariance by
dilation of A(l) « In(m), the weighted probability den-
sity function of order p must then have the same scaling
properties as Py)(m), since it is its transform by a di-
lation of A(l) by a factor BP. This automatically ensures
that the {(n,p) are p independent.

When p varies, & = (P can take any value between 0
and 1. Assuming covariance by dilation of A(l) by any
factor SP amounts then to assuming covariance by dila-
tion of A(l) by any o, 0 < & < 1. Note that this dilation
transforms (m;) = &(1)/n into O, (€(1)/n) = (&/n)*. The
set of transformations O, is a semigroup, which general-
izes the usual scale dilation £(!) — v£(l) by using a scale-
dependent dilation parameter y(£(l)). In contrast with
the usual dilation group, however, the set of transfor-
mations O, all leave one scale invariant (here the cutoff
scale 7). They can therefore be interpreted as the nat-
ural generalization of scale dilations in systems in which
the cutoff scale is always relevant, exactly like Lorentz
transformations are the generalization of Galilean trans-
formations in systems with a constant upper velocity.

If the SL model is correct, we are faced with a to-
tally new interpretation of intermittency in fully devel-
oped turbulence. Turbulence develops via scale-covariant
interactions, as modeled by the Navier-Stokes equations.

961



VOLUME 73, NUMBER 7

PHYSICAL REVIEW LETTERS

15 AUGUST 1994

This scale covariance extends from the injection scale to
the dissipative scale. Its signature is the hierarchical
structure of the various moments of energy dissipation
(4), characterized by an anomalous exponent 3. This
parameter measures the “degree of nonintermittency” of
the interactions. When it is equal to 1, the system is non-
intermittent and K41 is recovered. The value of 3 in fully
developed turbulence (8 = 2/3) is then just the signa-
ture of the intermittency of the interactions. The present
picture of intermittency holds irrespective of the details
of the geometry of the dissipative structures, which are
characterized by the parameter A [Eq. (14)]. It may then
be an accident that A should be equal to 8 in isotropic
fully developed turbulence. Indeed, measurements of in-
termittency in a turbulent boundary layer are compatible
with a SL model, with a different value of A [6].

Several interesting issues arise from this new picture.
In principle, the moment hierarchy (4) should hold in any
scale-invariant system, so that a similar form of intermit-
tency should be found in 2D turbulence or shell models of
turbulence, with possibly different parameters A and S.
Investigation of scaling properties of a class of shell mod-
els indeed confirms this possibility [12]. One may then
wonder how universal A and 3 are. From the comparison
between boundary layer and isotropic 3D turbulence, it
is very likely that A is strongly influenced by the bound-
aries, the geometry, and external forces (as long as they
do not break scale invariance). For (3, the situation is
less clear. The value of 3 found in the GOY shell model
by Benzi is very close to 2/3, as in isotropic turbulence.
Apart from scale invariance, the only real shared prop-
erty between the shell model and 3D turbulence is energy
conservation. Does it mean that 3 is mainly dependent
on the conservation laws, and not on the dimensionality
of the system? If so, we may expect different values of
[ to appear in 2D turbulence, characterized by different
conservation laws. This point is under investigation.
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Note added.—After completion of this work, I received
a paper by Z.S. She and E. Waymire which discusses
the log-Poisson law in relation with the general theory of
indefinitely divisible processes [13].
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