
VOLUME 73, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUs~ 1994

Linear Stability Analysis for Bifurcations in Spatially Extended Systems with
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We study the threshold in systems which exhibit a symmetry breaking instability, described, e.g., by
Ginzburg-Landau or Swift-Hohenberg equations, with the control parameter fluctuating in space and
time. Because of the long-tail property of the probability distributions all the moments of the linearized
equations have different thresholds and none of them coincides with the threshold of the nonlinear
equation, where the long tails are suppressed. We introduce a method to obtain the threshold of the
full nonlinear system from the stability exponents of the first and second moments of the linearized
equation.

PACS numbers: 47.20.Ky, 02.50.—r, 05.40.+j

The effect of noise on systems with symmetry break-
ing instabilities was studied experimentally during the last
years in thermal convection of simple fluids [1]and binary
mixtures [2], and in electrically driven instabilities in liq-
uid crystals [3]. Corresponding theoretical investigations
with additive noise involved simulations [4] and analytical
approximations [5]. Moreover, the influence of spatially
constant multiplicative noise in the form of temporal Auc-

tuations of the control parameter was investigated experi-
mentally [6,7] and theoretically [8,9]. Recently spatially
distributed multiplicative noise was also treated in simu-
lations of the two-dimensional Swift-Hohenberg equation
[10]with the surprising result of a threshold shift to lower
values. The analysis of the second moment (actually the
structure function) in the linearized theory was found to
be consistent with this result (with numerical accuracy).
At present a satisfactory analytical description exists only
for the zero-dimensional system [11] where a thresh-
old shift does not occur and where the behavior of the
moments (first, second, etc. or structure function) of the
linearized equation is totally misleading: The moments
exhibit downward shifted thresholds with larger shifts for
higher moments.

In order to clarify the situation we investigate nonlinear
partial differential Langevin equations for a real or com-
plex field W(x, t) in a d-dimensional space (x E Rd):

a, W(x, t) =

[DC„+a + ~eg(x, t) —g~W(x, t)~'] It(x, t), (1)
where 2„is a linear operator which couples the spatial
degrees of freedom. The positive parameter D measures
the strength of this coupling. We are especially interested
in the following cases:

5, = 5, (=Laplacian), Ginzburg-Landua (GL),

L„=—(1 + b,„),Swift-Hohenberg (SH) .

The coefficient a plays the role of a control parameter and
we added the fluctuating real field ~e$(x, t) leading to
a multiplicative noise. We choose Gaussian white noise

+(x, t) = u(x, t) exp[p(t)] (2)

where u(x, t) is a field whose "spatial root mean modulus
square" (SRMMS) is equal to 1,

ll~ll = Ql~(~. &)l' =
& (3)

(the overbar denotes spatial average), so that exp[p(t)] is
the SRMMS of W(», t). It is easy to see that in the linear
case (g = 0) u(x, t) is a homogeneous Markov process on
the unit hypersphere in function space, which depends

which is determined by its mean and correlation function

&F(x, t)& = 0. (f(x t)F(x'. t')& = f(» —x')~(t —t')

e measures the noise strength and the function f(x) gives
the spatial correlation. We are especially interested in

the limit f(x) B(x) (small correlation length). Because
of the singular nature of the white noise Eq. (1) has no
differentiable solutions and the derivatives must be inter-
preted in the sense of stochastic calculus. In particular,
for the product g(x, t)V(x, t) we use the Stratonovich in-

terpretation relevant for physical situations. The nonlinear
term —g~W(x, t)~2'It(x, t) with g ) 0 leads to a saturation
of the instability and describes a supercritical bifurcation.

The critical behavior of the deterministic equations
(e = 0) is well known: For negative control parameter
a the only stationary solution is a trivial one, W(x, t) —= 0.
For positive a it becomes unstable against plane-wave so-
lutions with wave vectors out of a band centered around
the critical wave vector k, = 0 in the Ginzburg-Landau
case and around the unit sphere ~k, [

= 1 for the Swift-
Hohenberg model. This band of wave vectors widens
with increasing a. These results are easily obtained from
the linearized equations (g = 0) where one has exponen-
tial growth or decay. Questions about the structure and
amplitude of the new attractors for a ~ 0 can only be an-
swered by taking into account the nonlinearities.

The critical behavior of the stochastic equation can be
studied by writing the order parameter as
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neither on p(t) nor on the control parameter a. p(t) is
given by

p(t) = po+ l
a ——

t
F[u(x, t'), g(x, t')] dt' it . (4))

The explicit form of the functional F can be derived
easily, but is not needed in the following. The ergodic
properties of the homogeneous Markov processes u(x, t)
and g(x, t) show that the integral term converges for t
~ to the stationary mean of its integrand with probability
1 [almost certain convergence (a.c.)]:

t

a.c. lim — F [u, g) dt' = (F[u, g])„.
Therefore the critical value is a, = (F[u, g] &„.For a (
a, every solution (It(x, t) converges to 0 with probability
1, whereas for a ) a, every nonzero initial value leads
to a divergent order parameter with probability 1. The
multiplicative noise does not destroy the bifurcation (in
contrast to additive noise).

The proof of the existence of this threshold was given
by Khas'minskii [12]. But the calculation of a, by
the above formula is in general not possible since the
stationary distribution is unknown. For a two-component
system, zero-dimensional or with spatially constant noise,
Muller and Behn used this method to calculate a, [8]
("sample stability" ). We introduce a method which is
applicable more generally.

Since a, is determined by the dynamics of the process
V(x, t) for arbitrary small values of (It(x, t), the nonlinear-

ity has no infiuence on a, . (The only qualitative change
is that in the nonlinear equation the trajectories can no
longer diverge for a ) a, .) Therefore it is possible to ob-
tain a, from the linearized equations alone (linear stability
analysis).

The moments. —It is usually useful to study the mo-
ments ()It(x, t)") (for n = 1, 2, . . .). From the linearized
equation (1) (g = 0) equations for the mean and the n-

point correlation functions can be obtained by using the
Ito calculus [13]or Novikov's theorem [10,14]

take the largest eigenvalue without this property):

(0'(x, t)") —exp(A„t) for t

These stability exponents characterize the critical val-

ues a,.
„

for the moments: a 6 a,
„

for A„S0. (For
the Ginzburg-Landau and Swift-Hohenberg equations all

eigenvalues are real because the corresponding operators
are self-adjoint. In general one of course has to consider
the real parts of the eigenvalues. )

In the Ginzburg-Landau case (5„=5„)there is some
similarity to quantum mechanics. There the equation for
the nth moment is equivalent to an n-particle Schrodinger
equation, and na + nef(0)/2 —A„ is the ground-state

energy of a system of n Schrodinger bosons with
mass fi2/2D, which interact pairwise via the potential
—ef(x; —x, ).

We want to emphasize that in general all a,„are
different and none of them is identical with the previously
defined threshold a, . On the contrary one has the

inequality

ao ~ ao( ~ao2 ~ '' (for g = 0) (9)
and we expect the & sign to hold. This fact can be
understood from the long-tail property of the probability
distribution P(%";x, t) (the probability density for finding
the value 4' at the location x and time t): Even if the

probability density is concentrated at small values of 0",
the moments may be dominated by large values with a
small probability and not by the small values around the

peak of the probability distribution. This can lead to
diverging moments although the probability distribution
converges to a 8 peak at zero. Since this effect becomes
stronger for larger exponents n, the moments of higher
order diverge earlier. This explains the inequality for the
critical values a„a,„.

The situation changes abruptly when the nonlinearity
is taken into account because then the long tails of the

probability distributions are suppressed. [So the averages
for the moments are no longer dominated by large 4
values and the moments will converge to zero as long as
the probability density approaches B(qt).] Therefore we

expect

(@(ox,~)) =
l
Di, + a + —f(o)3(e(x, i)),

t'

2

a, (+(xl, t)+(x, , t)) = [DX„,+ DL., + 2a

+ef(0) + ef(xl —x2)]

x(%'(xl, t)+(x2, t)&,

(6)

a,. = a,.)
= a,. = (for g 0 0) . (10)

Consequently, the thresholds for the moments of the

linearized equation in general only give lower bounds to
the threshold for the nonlinear system. Only the critical
value a, for the probability density as defined before does
not depend on the nonlinearity.

These facts have been proven directly for the zero-
dimensional equation

+(t) = [a + ~eg(t)]+(t) —g+(t)',

The largest eigenvalues A„ofthe linear operators on
the right hand side of these equations give the long-time
behavior of the nth moment (except if the corresponding
eigenfunction is zero for x~ = x2 = ., then one has to
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(C(t)& = o, (4(t)&g(t')& = ~(t —t') (ll)
From the linearized equation one obtains for the moments

d n'—(W(t)") = na + —e (4'(t)"
& (12)

dt
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and therefore the critical values are
n

(13)

Eq. (8). We obtain the result (for t ~)

m(t) = 2Ai —
—,A2 t,

whereas the exact solution of the linearized equation is o(t.) = (A2 —2A&)t. (18)

( t

'P(t) = 4'0expl at + ~e g(s) ds
l

o

w(t) &

=+oexp la+We
)

(14)

Since the Wiener process W(t) = fo g(s) ds fulfills

W(t)/t 0 for t ~ with probability 1 we get (for
t ~ ~ with probability 1)

% (t) - 0, if a & o,

W(t) diverges, if a ) 0,

and therefore a, = 0. Also the nonlinear equation can be
solved rigorously [11]with the result

a, = a,„=0 for all n E N. (15)

(ll+(x, t)ll) = exp m(t) + 2o.(t),

(ll%'(x, t)ll ) = exp[2m(t) + 2o.(t)]. (16)

Expressing m(t) and o(t) in term. s of these two moments
leads to

m(t) = 2 ln(Ill'(x, t) II) — ln(llq'(x, t) II'),

o.(t) = ln(ll+(x, t)ll ) —2ln(Ill'(x, t)ll). (17)

Since the SKMMS of the order parameter has the same
long-time characteristic as the order parameter itself, we
can use the long-time behavior of the moments from

Calculation ofa, (linear stability analysis) Sin.c—e the
full information about the stochastic process is contained
in its moments, we could calculate the threshold a, if
we had the long-time solutions for all moments. But this
would be a formidable task. Instead we look for a simple
approximation for the long-time limit which describes the
long-tail behavior of the probability distribution correctly
and whose parameters can be determined from the first
few moments. Our choice is motivated by the zero-
dimensional case, Eq. (14), where 4(t) is gi'ven by the
exponential of a Gaussian distributed process with mean
at and variance et. Since the corresponding probability
density gives the correct long-tail behavior, we make for
the systems with spatial degrees of freedom the similar
ansatz that p(t) is a Gaussian process, whose mean and
variance will be called m(t) and a(t) It can b. e shown
that this assumption leads to correct results for the critical
value a, up to the second order in the noise strength
(ez) (under some weak conditions which are fulfilled in
the systems mentioned) [15]. Then the first and second
moments of the SRMMS of the order parameter W(x, t)
are

2

GL 1D: A2 = 2l a + —f(0) +
2 16D) '

2D: A2 = 2 a + —f(0) + m Df(0)
2

8~DEx expl—

( 2

SH 1D: Az = 2l a + —f(0) + + 0(e ) l,
2 16D )

( 2

2D: A2 = 2l a + —f(0) + + 0(e ) l.
2 64D )

(21)

Note that the term f(0) becomes singular in the limit

f(x) ~ B(x). For the two-dimensional Ginzburg-Landau
equation the spectrum of the eigenvalue problem (7) has
no upper bound for f(x~ —x2) = B(x~ —xq); we got our
result by a formal cutoff in Fourier space with k,„=
m 2f (0) which is motivated by considering the problem on
a lattice with discretization Ax. Note that the threshold
shifts for the first and second moments are of order e
(as in the zero-dimensional case), but their difference is
of higher order (in contrast to the zero-dimensional case),
see Eq. (13). With Eq. (19) we finally get for the critical
values of the control parameter

GL 1D: a, = ——f(0) +
2 16D '

8m.D &2D: a, = ——f(0) + m Df(0) expl
2

SH 1D. a, = ——f(o) +
2 16D

2D: a, = ——f(O)+
2 64D

' (22)
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Clearly the threshold is given by m = 0, i.e.,
1

a = a, -. .- 2A) = 2A2. (19)

Results. —We performed the explicit calculations for
the Ginzburg-Landau and Swift-Hohenberg equations in

one and two dimensions. For the first moment one obtains
in all four cases

&&
= a + —f(o), a, i

= ——f(o), (2o)

as can be seen immediately from Eq. (6). The calculation
of the stability exponent for the second moment from

Eq. (7) leads to nontrivial eigenvalue problems which we
do not discuss in detail here. For f(x) b(x) (or, more

generally, for correlation length small compared to D/e)
the results are
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2

a, = ——+ —+O(e).
4 32

(24)

This problem can be treated rigorously with the method
from Ref. [12]which gives the same result up to order e~,

as expected.
Clearly our method for calculating the threshold a,

from the stability exponents of the first and second
moments of the linearized equation is not restricted to
the equations mentioned in this Letter. We expect that it
works similarly for many other models, even for equations

which again differ from a, ~ only by terms of order e2

or higher. For the two-dimensional Ginzburg-Landau
equation this shift is actually proportional to f(0) but
of infinitely small order in e since exp( —87tD je) is not
analytical in t. = 0.

In order to check our results we did Monte Carlo
simulations for the one-dimensional Ginzburg-Landau
equation. The Laplace operator was calculated in
Fourier space (pseudospectral code). Because of the
multiplicative noise we could only use an algorithm of
first order in At, so we had to choose a rather small
time step: At = 0.001. For t = 1 and discretization
b,x = 0.1, i.e., f(0) = B(0) = (b,x) = 10, our theory
predicts a, = —4.9375 whereas a, ~

= —5. The simu-
lation gave —4.940 & a, & —4.935 for both the linear
equation g = 0 and the nonlinear g = 1 in perfect agree-
ment with our theory.

The rather large leading-order threshold shift is con-
sistent with the numerical results of [10], but there the
accuracy was not sufficient to verify the contribution of
order e2. For strong spatial coupling (D ~) this contri-
bution vanishes, and the critical value a, becomes equal
to that of the first moment of the linearized equation a, ~.

Neither the zero-dimensional system Eq. (11) nor Eq. (1)
with spatially constant noise (which is in the linearized
form actually equivalent to the zero-dimensional problem,
as can be seen by Fourier transformation) exhibit such a
shift. In the limit of weak spatial coupling (D 0) the
system becomes equivalent to the zero-dimensional one,
i.e., the shift vanishes. The expansion of A2 and a,. in
orders of t breaks down then, as can be seen from the
diverging contributions of order e~ in (21) and (22). In
fact the shift results from an interaction between the spa-
tial coupling and the spatially nonconstant multiplicative
noise. Actually no continuum is necessary to obtain this
effect and already two coupled ordinary differential equa-
tions with uncorrelated multiplicative noise show the shift.
Thus for the system

u = [a + ~egt(t)]u + v —u,

v = [a + ~Egz(t)]v + u v,

(a(t)) = o. (I(t)rJ(t')) = ~;,~(t —t'), (23)

our method gives

with higher-order time derivatives or multicomponent
systems.

An analysis for spatially correlated noise, which should

give the connection between spatially constant and
6-correlated noise, will be published elsewhere. Finally
we note that understanding the nonlinear behavior above
threshold presents a very challenging problem. In the
zero-dimensional case (Stratonovich model) the problem
was solved rigorously for Gaussian white noise [11] and
dichotomous noise [16].

We wish to thank A. Hernandez-Machado for bringing
our attention to this problem, for informative discussions,
and for making available Ref. [10] prior to publication.
We also thank M. O. Caceres for useful comments.
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