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Generating Surrogate Data for Time Series with Several Simultaneously Measured
Variables
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We propose an extension to multivariate time series of the phase-randomized Fourier-transform
algorithm for generating surrogate data. Such surrogate data sets must mimic not only the auto-
correlations of each of the variables in the original data set, they must mimic the cross correlations
bettoeen all the variables as well. The method is applied both to a simulated example (the three
components of the Lorenz equations) and to data from a multichannel electroencephalogram.
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A number of measures have been developed for quanti-
fying deterministic low-dimensional chaotic behavior as
manifested in a time series; these include estimates of
the dimension of the strange attractor [1], of the Lya-
punov exponent(s) [2], and of nonlinear prediction er-
ror [3]. Computing these quantities can be problematic,
however, and values can vary markedly from one algo-
rithm to the next. Furthermore, nonchaotic and even
linear stochastic processes can generate time series data
which these algorithms may incorrectly characterize as
low dimensional [4,5]. For this reason, a number of au-
thors [6—8] have advocated a direct comparison of the
measured data set with computer generated "surrogate"
data sets that have the same linear correlations as the
original.

The basic idea is to compute the nonlinear statistic of
interest for the original data set and for each of an ensem-
ble of surrogate data sets. If the computed statistic for
the original is significantly different from the values ob-
tained for the surrogate sets, one can infer that the data
were not generated by a linear process; otherwise, there
is no reason to reject the notion that a linear model fully
explains the data. Surrogate data can provide a formal
statistical test of the null hypothesis that the data are
linear, or an informal "sanity check" on whether an esti-
mated dimension, say, is anything more than an artifact
of linear autocorrelation.

For univariate time series, two approaches have been
suggested for generating surrogate data consistent with
the null hypothesis of linearly correlated Gaussian noise.
One approach is to fit an explicit linear model to the
data (e.g. , an autoregressive moving average, or ARMA,
model [9)) and then to iterate the model to generate the
data [6]. A second approach is to Fourier transform (FT)
the data set, randomize the phases, and then invert the
transform [7,8]. It is beyond the scope of this Letter to
discuss the practical and theoretical differences between
the two approaches; we will focus on the FT method

because it is the more straightforward of the two to im-

plement.
Though much of the work on nonlinear time series

analysis has focused on univariate data, one often has
available several simultaneous measurements of a sys-
tem, either of different aspects (pressure and tempera-
ture, say) or at different spatial locations. For instance,
it is conventional to simultaneously measure electroen-
cephalogram (EEG) signals from various places on the
scalp, and a number of authors have used this multivari-
ate data for dimension estimation [10,11]. As with uni-
variate time series, one would like to use surrogate data
to assess the role of linear correlations in contributing to
the relatively low dimensions that were reported in these
studies.

Below we describe an algorithm for generating multi-
variate surrogate data that corresponds to the null hy-
pothesis of linearly correlated Gaussian noise. We apply
this algorithm both to a simulated and to a real multi-
variate data set. We find in both cases that the evidence
for nonlinear structure can be (but is not necessarily)
stronger for the multivariate data set than for any of the
individual variables. More detailed investigations will be
reported elsewhere [12].

As a brief review, and to introduce the notation,
we will first describe how to generate univariate phase-
randomized Fourier-transform surrogate data. Given a
time series, z(t), of N values taken at regular intervals
of time t = tp, tt, . . . , tN t = 0, At, . . . , (N —1)Et, apply
T, the discrete Fourier transform operator, to obtain

N —1

Further, write this complex valued Fourier transform as
X(f) = A(f)e'~if', where A(f) is the amplitude and

P(f) is the phase. X(f) is evaluated at the discrete
frequencies f = N6 f/2, . . . , 6f, 0,—6f, . . . , N—h, f/2,
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where 6f = 1/%At.
A "phase-randomized" Fourier transform X(f) is

made by rotating the phase P at each frequency f by
an independent [13] random variable p which is chosen
uniformly in the range [0, 2'). That is,

X(f) A(f)ei[&(f)+v (f)j (2)

and from this the surrogate time series is given by the
inverse Fourier transform:

z(t) =& '(X(f)k =& '(X(f)e""')

X; (f)Xi,(f) = A~(f)AJ, (f)e'~~" (~l (4)

where again A(f) is the Fourier amplitude, and P(f) is
the phase angle. To preserve all the linear autocorrela-
tions and cross correlations, we need to fix X&'(f)Xk(f)
for all pairs j, k. Since Eq. (4) only involves difFerences
of phases, this is readily achieved by adding the same
random sequence p(f) to P~(f) for all j. That is,

x (&) = & '(X (f)e"' ') (5)

where y(f) is the same for all j.
As an example, we compare multivariate and univari-

ate embeddings for N = 512 points from the Lorenz
equations [16] (with parameters cr = 16, P = 4, and
R = 45.92). The sampling time At is varied from 0.02 to
1.00 in increments of 0.02. For each choice of sampling
time we create time series of the x, y, and z components,
and make 39 univariate surrogates of each component in-

dividually, as well as 39 multivariate surrogate data sets.
For our discriminating statistic, we use the Takens best

estimator of correlation dimension [17]

C(rp)

I,"'[C( )/ ]d
' (6)

where Tp is an upper cutofF, and C(r) is the correlation

By construction, x(t) will have the same power spec-
trum as the original data set z(t), and by the Weiner-
Khintchine theorem the same autocorrelation function

[»1
For multivariate time series, we not only want our sur-

rogate data generator to reproduce the linear properties
of each of the time series, but also any linear correlations
between them. Suppose we have m simultaneously mea-
sured variables, xi(t), xz(t), . . . , z~(t) with zero mean
and unit variance, and let Xr(f), X2(f), . . . , X~(f) de-
note their respective Fourier transforms. The cross cor-
relation between the jth and kth variables is given by
C~i, (7.) = (z~(t)xg(t —7.)). For a linear Gaussian mul-

tidimensional process, all of the information about the
process is given by these cross correlations. By an ex-
tension of the Weiner-Khintchine theorem, the Fourier
transform of the cross-correlation function is the cross
spectrum:

integral

%—1 N —1—k

C(&) = ~, ) . ) O(r —Ilx(4+k) —x(fg)li) (7)
k=W j=o

Here, 0 is the Heaviside function,
~[

.
[i is the maximum

norm, and W is a constant, the order of a few autocor-
relation times, which is used to remove autocorrelative
efFects [4]. x can be either a multivariate signal or a time
delay embedding [18]: x(t) = [z(t), x(t —~). . .x(t-
(m —1)r)].

The Takens estimator with upper cutoK ro —— 6.5
(roughly half the standard deviation of the series) and
R' = 5 is computed for each of the 2:, y, and z com-
ponents as well as for their surrogates using a time de-

lay ~ equal to the sampling time and embedding dimen-

sion m = 3. We also calculate the Takens estimator
for the multivariate embedding (simultaneous x, y, and

z) and its multivariate surrogates. For each choice of
sampling time and embedding (x, y, z, and multivari-

ate) we use the following rough measure of significance:
S = ~Q

—(Q,„„)[/o,„„,where Q is the Takens estima-
tor for the original data set, (Q,„„)is the mean value
statistic for the surrogates, and o,„„is the standard de-
viation of the statistic for the surrogates. The units of
S are commonly called "sigmas. " The whole process is
then repeated 25 times using new sequences of z, y, and
z from the Lorenz equations and the significance is av-

eraged over all 25 runs. In Fig. 1 we show the average

significance as a function of sampling time for the 2:, y, z,
and multivariate embeddings. The figure shows that for
sampling times shorter than the mutual information time
(At = 0.11), it is easier to detect nonlinearity using the
univariate ernbeddings, while for longer sampling times
multivariate is better.

As a second example, we apply the multivariate sur-
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FIG. 1. Average significance (measured in sigmas) of the
finding of nonlinearity in a Lorenz time series with N = 512
points using the Takens dimension estimator with ro ——6.5 as
a function of the sampling time At. The solid curve is for the
multivariate embedding (x, y, z), while the dashed line is for
a univariate embedding of the x component, the dot-dashed
line is for the y component, and the dotted line is for the z
component.
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FIG. 2. Takens dimension estimator with ro ——0.5 as a
function of embedding dimension, for multivariate embed-
dings using the first 1 through 16 channels of the EEG data.
Solid curve is for the original data; dots are for the amplitude
adjusted multivariate surrogates.

rogate data method to 16-channel EEG data, recorded
for 2 min at 128 Hz from a 20 year old female volun-
teer in a relaxed state with eyes closed. These data were
generously supplied by Milan Palus, and are more fully
described in Ref. [11].Palus et aL [11]have also analyzed
this data set and they compute a correlation dimension
of 5.8, though they argue that this number shoul'd not
be interpreted "as a dimension of a hypothetical strange
attractor, " but instead as a measure of the average "com-
plexity" of the signal. Complexity, of course, is a difficult
concept to quantify, but an estimated correlation dimen-
sion can still provide a discriminating statistic in tests
for nonlinear structure. In this Letter, we describe re-
sults for the first 8192 points. The same analysis was
applied to the last 8192 points with essentially the same
results. Before making the multivariate surrogate data
sets, we first filter the data with a simple notch filter
in the frequency domain to remove interference from the
recording equipment at 50, 28, and 22 Hz, and transform
each channel to have zero mean and unit variance.

The multivariate embedding of dimension m is made
by using the first rii channels of the data. In Fig. 2,
we show the Takens estimator of correlation dimension
with an upper cutoff ro = 0.5 and W = 20 for the first
8192 points of the data set, both for the original data
(solid line) and for the multivariate surrogates (dots).
We account for the non-Gaussian amplitude distribution
by using the amplitude adjusting algorithm described in
Ref. [8] for each component. While there is no indication
of low dimensionality, there is some evidence for nonlin-
earity, as the statistic for the original data is significantly
less than that for the surrogates (the method formally re-
jects the null hypothesis at the 95'%%uo level), at least for the
smaller embedding dimensions. However, the difference
between the statistic for the original data and that for
some of the surrogates is only a few percent, so while the
difference is formally significant, it is not substantial.

We also consider each of the 16 channels individu-
ally; here, we use a time delay embedding with a lag
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FIG. 3. Significance (measured in sigmas) of nonlinearity
for multivariate (solid) snd univariste (dotted) embeddings as
a function of embedding dimension for the first 8192 points.
Plusses indicate points for which the value of the Takens esti-
mator for the original data is outside the distribution of values
for the 39 surrogates; this corresponds to a rejection of the
null hypothesis at the 95% confidence level. The dashed line
is the approximate 95% confidence limit based on a t distribu-
tion with 38 degrees of freedom. Circles are for discrepancies
between the exact snd approximate 95% confidence limits.
The confidence limits derived &om the t distribution are in
surprisingly good agreement with the bootstrapped values.

of r = 2 sample times (the point at which the autocor-
relation function was roughly one-half). 39 univariate
amplitude adjusted surrogate data sets are generated for
each of the channels. The Takens estimator is then com-
puted, again using ro = 0.5 and W = 20, for the original
and surrogates of each channel, using embedding dimen-
sions of 1 through 16. As above, we use the number of
sigmss as a rough measure of significance, and in Fig. 3
we show the results for both the multivariate (solid lines)
and univariate (dotted lines) data sets. For smaller em-
bedding dimensions, channels 2 and 13—corresponding
to the right occipital (02) and left frontal (F7) sites—give
the best evidence for nonlinearity (largest sigma values),
while for larger embedding dimensions the multivariate
embedding is better. We remark that the full range of
embedding possibilities has not been considered; in par-
ticular, we suspect that the "optimal" embedding will be
a combination of some channels and some time delays.
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