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Statistical Distribution for Generalized Ideal Gas of Fractional-Statistics Particles
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We derive the occupation-number distribution in a generalized ideal gas of particles obeying fractional
statistics, including mutual statistics, by adopting a state-counting definition. When there is no mutual
statistics, the statistical distribution interpolates between bosons and fermions, and respects a fractional
exclusion principle (except for bosons). Anyons in a strong magnetic field at low temperatures
constitute such a physical system. Applications to the thermodynamic properties of quasiparticle
excitations in the Laughlin quantum Hall fluid are discussed.
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Statistics is the distinctive property of a particle (or
elementary excitation) that plays a fundamental role in

determining macroscopic or thermodynamic properties of
a quantum many-body system. In recent years, it has
been recognized that particles with "fractional statistics"
intermediate between bosons and fermions can exist in
two-dimensional [1]or in one-dimensional [2,3] systems.
Most of the study has been done in the context of many-
body quantum mechanics. There have been calculations
of thermodynamic properties of certain systems [2,4—6]
with the help of exact solutions, but general formulation
of quantum statistical mechanics (QSM) for ideal gas
with an occupation-number distribution that interpolates
between bosons and fermions is still lacking.

A single-particle quantum state can accommodate an
arbitrary number of identical bosons, while no two identi-
cal fermions can occupy one and the same quantum state
(Pauli s exclusion principle). In QSM [7], this difference
gives rise to different counting of many-body states, or
different statistical weight W. For bosons or fermions,
the number of quantum states of N identical particles oc-
cupying a group of G states is, respectively, given by

(G + N —1)! G!
N! (G —1)! N! (G —N)!

conditions and size of the condensed matte-r region fixed.
The N-particle wave function, when the coordinates
of N —1 particles and their species are held fixed,
can be expanded in a basis of wave functions of the
remaining particle. The crucial point is that in the
presence of other particles, the number d; of available
single-particle states in this basis for a particle of species
i generally is not a constant, as given by G;; rather it
may depend on the particle numbers {N;j of all species.
This happens, for example, when localized particle states
are nonorthogonah; as a result, the number of available
single-particle states changes as particles are added at
fixed size and boundary conditions. Haldane [3] defined
the statistical interactions a;, through the linear relation

(3)

where (b,N, ) is a set of allowed changes of the particle
numbers. In the same spirit, but more directly to the
purposes of QSM, we prefer defining the statistics by
counting [8] the number of many-body states at fixed [N;),

. . G, +N, —1 —g, u, , (N, —a,,)!
"i" (N;)! G; —1 —g~ u;, (Nt —6;J) !

A simple interpolation implying fractional exclusion is

[G + (N —1)(1 —u)]!
N! [G —uN —(1 —u)]!

with n = 0 corresponding to bosons and e = 1 fermions.
Such an expression can be the starting point of QSM for
intermediate statistics with 0 ( n & 1. Let us first clarify
its precise meaning in connection with "occupation of
single-particle states, " and justify it as a new definition
of quantum statistics, tt la Haldane [3].

Following Ref. [3], we consider the situations in which
the number G; of independent states of a single particle
(elementary excitation) of species i, confined to a finite
region of matter, is finite and extensive, i.e., proportional
to the size of the matter region in which the particle
exists. Now let us add more particles with the boundary

The parameters n;, must be rational, in order that a
thermodynamic limit can be achieved through a sequence
of systems with different sizes and particle numbers. We
call u;, for i 4 j mutual statistics. We note that Eq. (4)
applies to the usual Bose or Fermi ideal gas with i labeling
single-particle energy levels and u;, = uB;, (u = 0, 1).
So with an extension of the meaning of species, this
definition allows different species indices to refer to
particles of the same kind but with different quantum
numbers [9]. Note there is no periodicity in so-defined
statistics, and it makes sense to consider the cases with
u &1or2.

As usual in QSM, we start with the ideal situations in
which total energy (eigenvalue) is always a simple sum,

E= gN;e;,
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with e; identified as the energy of a particle of species
i .We call such a system a generalized [10] ideal gas
if Eq. (4) also applies. Postponing the discussions about
when Eqs. (4) and (5) are obeyed, let us first apply
them to study QSM of generalized ideal gas. Following
the standard procedure [7], one may consider a grand
canonical ensemble at temperature T and with chemical
potential p, ; for species i. According to the fundamental
principles of QSM, the grand partition function is given
by (with k the Boltzmann constant)

Z = g W((N;])exp gN; (p, ;
—e;)/kT (6)

As usual, we expect that for very large G; and N;, the
summand has a very sharp peak around the set of most
probable (or mean) particle numbers (N;). Using the
Stirling formula In N! = N ln(N/e), and introducing the

average "occupation number" defined by n;
—= N;/G;, we

express ln W as (with P;, =— a;, G, /G;)

(
gG; . n; l—n n; — 1 —gP;~n~ ln 1 —gP;~nj + 1 + g(B;J —P;~) nj ln 1 + g(B;~ —

P;&) nj
)

(7)

The most probable distribution of n; is determined by n; satisfies

Bn;
ln W + g G;n; (p, ;

—e;) /kT = 0. (1 —un;) [1 + (1 —u)n;]' = n;e" " " (14)

It follows that
and we have the statistical distribution

1+ g(~« —P«)n«
k

n; = 1

w(e!' &~~" ) + n
' (15)

1 —Z«P~«««
1 + Z«(~j« —

Pg«) n«

(9) w(g) [1+ w(g)]' = g —= e' (16)

where the function w(g) satisfies the functional equation

Setting w; = n,
' —gq /3;«n«/n;, we have

w, (e, p, )/«T—
"." (I + wz)

(10)

Therefore the most probable average occupation num-

bers n; (i = 1, 2, . . .) can be obtained by solving

g(a, ,w, + P,,)n, =1,

with w; determined by the functional equations (10). The
thermodynamic potential 0, = —kT ln Z is given by

1+ n; —g, P;,n,
PV = kT gG; ln — — ', (12)

1 —QJ p;Jnj

and the entropy, S = (E —g,. p;N; —II )//T, is

$ e; —p, ; 1 + n; g P;~'n~
G; n;

' '+ln
k .

' ' kT 1 —g. pjn~
(13)

Other thermodynamic functions follow straightforwardly.
As usual, one can easily verify that the fluctuations,

(N; —N; )/N;, of the occupation numbers are negligi-
ble, which justifies the validity of the above approach.

The simplest example is the ideal gas, i.e., identical
particles with no mutual statistics, for which we set n;, =
a8;,. and p, ; = p, . Then the average occupation number

Note that w(g) = g —1 for u = 0, and w(g) = g for
u = 1. Thus, Eq. (15) recovers the familiar Bose and

Fermi distributions, respectively, with u = 0 and e = 1.
For semions with u = 1/2, Eq. (14) becomes a quadratic
equation, which can be easily solved to give

n; = 1

vj'1/4 + exp [2(e; —p, ) /kT]
(17)

For intermediate statistics 0 ~ u ~ 1, it is not hard to se-
lect the solution w(g) of Eq. (16) that interpolates between
bosonic and fermionic distributions. In particular, when g
is very large, we have w(g) = g and, neglecting n com-
pared to w(g), we recover the Boltzmann distribution

—(e, —p, )/kT

at sufficiently low densities for any statistics.
Furthermore, we note that g is always non-negative, so

is w; it follows from Eq. (15) that

n;~1 n. (19)

This expresses the generalized exclusion principle for
fractional statistics. In particular, at absolute zero, g = 0
if e; ( ~, and g = +~ if e; ) p, . From Eq. (16), we
have w = 0 and ~, respectively. Thus, we see that at T =
0, for statistics n 4 0, the average occupation numbers

923



VOLUME 73, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUsT 1994

n; = 0, if';~EF,
1/n, if';&EF (2o)

for single-particle states with continuous energy spectrum
obey a step distribution like fermions:

N
n =——

G po

1

w(e~' ~1~"r) + n

and (16) with only one energy e = hrp, /2, we have

(26)

The Fermi surface e = EF is determined by the require-
ment g e G; = nN B.elow the Fermi surface, the av-
erage occupation number is I/u for each single-particle
state, in agreement with fractional exclusion.

One may be tempted to consider, in parallel to the usual
Bose and Fermi ideal gas, the case with

h k; V(bk)
2m

'
(2m. )2

V 1+w
A = —kT —1n

Vo

V 1+ (1 —n)n= —kT —1n
Vo 1 —nn

(27)

where w(p) is the positive solution of Eq. (16). Here p —=

N/V is the areal density, and po —= 1/Vo. Equation (26),
together with (16), determines the chemical potential p in
terms of p/pp and T. Thermodynamic quantities can also
be expressed as functions of the ratio p/pp. In particular,
the thermodynamic potential is

kF = (4m n)N/V. (22)

say in two dimensions with V the area. Then treating
momentum as continuous, one has the Fermi momentum

The equation of state is

PV ( p ' 1 + (1 —n)p/pp
ln

NkT (po 1 —u(p/po)
(28)

Moreover, at finite temperatures, by using (15) and (16),
the sum g, G; n; = N can be performed to give

p, 2mh N ( 2mh Nl=u —+ ln 1 —exp — — . 23
kT mkT V ( mkT V)

Using the identity derived by integration by parts,

The pressure P is linear in T for fixed p. It diverges
at the critical density p, = (1/u)pp, which corresponds
to the complete filling of the LLL. The emergence
of an incompressible state at filling fraction 1/u is a
consequence of the generalized exclusion principle (20)
[17]. The magnetization per unit area is

1 —nn;
de;ln ' = de;e;n;,

o 1+ 1 —un; o
(24)

2pp 1 + (1 a)p/pp
ppp +

2
ln

1 —u(p/pp)
(29)

PV = NkT 1 + (2u —1)NA /4V (25)

where A = $2vrh2/mkT. So the "statistical interactions"
are attractive or repulsive depending on whether u & 1/2
or u ~ 1/2.

Whether a given system satisfies the seemingly harm-
less conditions (5) or (21) together with (4) is highly
nontrivial. It turns out [11] that statistical transmuta-
tion happens in 1D Bethe-ansatz solvable gas, so that
both of these conditions apply if particles of different
pseudomomenta can be viewed as belonging to differ-
ent species. On the other hand, while it was claimed [3]
that the definition (4) for fractional statistics does not ap-

ply to free anyons, i.e., Newtonian particles carrying flux
tubes [12,13] in two spatial dimensions, anyons in a mag-
netic field are known to satisfy both (4) and (5) if all
anyons are in the lowest Landau level (LLL) [14], as is
the case at very low temperatures. The Jastrow-type pref-
actor II,&b(z, —zb), with 0 ~ 8 & 2m. , in the anyon
wave function has the effect of increasing the flux through
the system by (8/m)(N —1). Thus, w. ith fixed size and
number of flux, the dimension of the effective boson
Fock space [15,16] is given by d = N~ —(8/7r)(N —1),
where N~ = qBV/hc —= V/Vp, with q the anyon charge.
Equation (2) applies with the single-anyon degeneracy
G = N~ and the statistics n = 8/rr. Applying Eqs. (15)

924

we have the statistics-independent relation PV = E.
In the Boltzmann limit [exp(p, /kT) « 1], w(g) =
g+ n —1,

where p, p
= qh/2mc is the Bohr magneton. Note the

first (de Haas —van Alphen) term is statistics independent.
At low temperatures, kT « hen„ the second term can be
neglected except for p very close to (1/a)pp, where it
gives rise to a nonvanishing, u-dependent susceptibility

(
1

&)
p/Pp

2mhc & B) (1 —up/pp) [I + (1 —a) p/pp]

(30)

The entropy per particle is also u dependent:

—=k 1 —n+ —~ln 1+(1 —u)—po& p
p) po

—k ln ——k
/

——u
/

ln
/

1 —u —
/

.
p &po

po 4 p ) & Po)
(31)

Equations (27), (28), and (29) have been derived in
Ref. [6] from the known exact many-anyon solutions in
the LLL.

Vortexlike quasiparticle excitations in Laughlin s in-
compressible 1/m fiuid (m being odd) [18] are known to
be fractionally charged anyons [18—21], and their wave
functions are as if they are in the LLL (with electrons act-
ing as quantized sources of "fiux") [15]. The existence
of two species of excitations, quasiholes (labeled by —)
and quasielectrons (labeled by +), dictates nontrivial mu-
tual statistics. In this case, fixing the boundary conditions
means fixing the total magnetic flux N~ passing through
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the system. The latter is related to the electron number
N, and the excitation numbers N by

Np
—= eBV/hc = mN, + N —N+. (32)

The Hilbert-space dimension d for both quasielectrons
and quasiholes is N, + I [15]. It follows that

= —a+ = tz + = 1/m, u+~ = 2 —1/m (33)

(appropriate for hard core-quasielectrons [16,22]). The
single excitation degeneracy in the thermodynamic limit is
G+ = G = (I/m)Ny. Ignoring the interaction energies
and assuming the system is pure, we apply the formulas
(10)—(13) to this case with the values (33) for u;, . The
densities p of the excitations are given by

p~ w- + u-- —u

po (w+ + tz+i)(w — + ct ——) ized —ct —y

(34)
where po = G /V; w satisfy the functional equations

--(1+ )' --I
I

= ('.-&-1"' (35)(I + w-j
Here a is the creation energy of a single excitation. At
T = 0 or very close to it, thermal activation is negligi-
ble; there is only one species of excitations behaving like
anyons in the LLL. If, say, N~ ~ mN„ then there are
only quasielectrons: n = 0, n+ = (mN, —N@)/G+ =
1/(w+ + n++). One can apply the above Eqs. (26)—
(31). At higher temperatures, thermal activation of quasi-
particle pairs, satisfying p, + + p, = 0, becomes impor-
tant and the effects of mutual statistics become manifest
with increasing density of activated pairs. The thermo-
dynamic properties at different sides of electron filling
t —= N, /N~ = 1/m are not symmetric due to asymme-
try in quasielectrons (ot++ = 2 —1/m) and quasiholes
(ct = 1/m). The general equation of state is

p ~ I + p /po —~; j(pj/po)
1 —g, ~, (p, /po)

When the excitation densities satisfy

ij pj = po~ (37)
j=+,—

the pressure diverges and a new incompressible state is
formed, as a result of the generalized exclusion princi-
ple obeyed by the excitations upon completely filling the
LLL. At T = 0, e.g., for i = + (quasiparticles) the limit
(37) is reached when electron filling is v = 2/(2m —1),
giving rise to the well-known hierarchical state [15,16,23].
At finite T, it may happen at somewhat different fill-

ing, because of the additional quasihole contribution in
Eq. (37). Moreover, the magnetization per unit area is

( ekT po + pi QJ tsij pj )94 = —p, ;p;+ ln
mhc po —g, u;ipj )

'

(38)
with p, = Be /ijB Adetailed. analysis of the properties
of thermally activated quasiparticles at finite temperatures
will be given elsewhere [24].

To conclude, we have formulated the QSM of general-
ized ideal gas (with no interaction energies) for particles
of fractional (mutual) statistics, in Haldane's sense. For
identical particles with no mutual statistics, the statisti-
cal distribution interpolates between bosons and fermions,
exhibiting fractional exclusion, which makes the particles
(except bosons) more or less like fermions. Theoreti-
cal examples of generalized ideal gas include 1D Bethe-
ansatz solvable gases and 2D anyons in the LLL. For
real physics, our formalism applies to thermodynamics of
quasiparticle excitations in pure Laughlin liquids, and may
shed new light on 1D quantum systems.
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