
HYSICAL .REVIEW

VOLUME 73 15 AUGUST 1994 NUMBER 7

Reversible Quantum Measurements on a Spin 1/2 and Measuring the State of a Single System
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A measurement procedure on a spin 1/2 system is described, whose effect on the (possibly unknown)
state of the system can be reversed, by means of other similar measUrements, with a sizable probability
of success P"'" (e.g., 1/2 ( P"" & 1, depending on the state). Repeated such measurements followed
by reversal, on a single system, allow us to determine its (a priori unknown) state operator with a
probability of success which is nonzero, though extremely small (because P"' ( 1).

PACS numbers: 03.65.Bz

(1) Introduction —Irrever. sibility is a notorious aspect
of quantum measurements: In particular, every quan-
tum measurement must necessarily terminate with the
(thermodynamically) irreversible amplification of some
microscopic quantum event into a macroscopically ob-
servable fact (e.g., the visible mark made by a single pho-
ton on a photographic plate). von Neumann [1] pointed
out another, more specifically quantum, form of irre-
versibility: Consider measurements of the first kind, of
an observable A = 5 1$„)a„($„1,on an ensemble of sys-
tems all in the same (initial) state 1W ), hence with a pure
density operator p' = 1W')(4'1. Since the measurements
"collapse" each individual system into one of the states
1p„) with probability 1(@„1W')1z,one ends up with an en-
semble described by a mixed (final) density operator pf:

P' = I'P'&(P'I - p = /14. )(4.lp'14. &(g. l. (1.1)
n

Unless 1W') belongs to the orthogonal set (1@„)),in which
case pf = p', the process (1.1) is irreversible in this
sense that no unitary transformation (which necessarily
preserves the eigenvalues of p) can convert pf back
into p'. Also, the "entropy" of the ensemble, S =
—keTr{p Inp) = —keP, p, log p, (p, the eigenvalues of
p) increases under a transformation (1.1) from a pure state
(one of the p, = 1, all others zero, S = 0) to a mixed state
(S o 0).

The above irreversibility is really a bit artificial: Recall
that pf in (1.1) describes an ensemble of systems,
each in a pure state 1P„) which is known (from the

readouts of the individual measurements). So in fact, the
measurements can be reversed system by system, since
any two pure states, such as 1@„)and 1W'), can always
be connected by a unitary transformation. Suppose, for
instance, we measure the z spin component, S„on an
ensemble of spins 1/2 all in state 1+,x) (we denote
by 1~,x) the eigenkets of S„, etc.): Then each spin
gets collapsed into either 1+,z) or 1

—,z), which can
indeed be unitarily transformed back into the initial
state 1+,x), by either a —m. /2 or a +n. /2 rotation
about the y axis. Note that different final states require
different rotations. So indeed, as noted by von Neumann,
no single unitary transformation can convert all the
individual final (postmeasurement) states, or the density
matrix which represents them as an ensemble, back into
the initial (premeasurement) state. But each individual
measurement is reversible, provided the initial states are
known [2].

If, however, an initial state is unknown, then we
cannot revert back to it (knowingly), because the unitary
transformation required depends on it; and if we do so by
luck (e.g., we rotate a final state 1+,z) into 1+,x), say, and
the initial state happened to be 1+,x), but unknown to us),
then we cannot be aware of it. Moreover, there can be no
hope of ever (knowingly) getting back an unknown initial
state, because all information on it has been lost: Indeed,
in a measurement of the first kind, as used here, the final
state is known, but it has no "memory, " that is, it carries
no information on the initial state (apart that the latter had
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I@& = I+&c+ + l-&c, Ic+I + Ic I
= 1. (2.1)

Pure states, however, are not the natural states for systems
in the wild: More usually, a system s will be in a mixed
state, due to entanglement with the environment e (in full
generality, the rest of the Universe) with which it must
have interacted in the past. To obtain a pure state, in

fact, one has to break any entanglernent with e by an
act of observation, collapsing s into some (known) such
state. In this Letter, however, we are concerned with
measurements on unknown, hence likely entangled, states.
The most general normalized entangled state for a spin
1/2 system s is of the form

I+&.+. = I+&.Ix+&. +
I
—

&.Ix-&. ~

&x+Ix+& + &x-Ix-) = 1. (2.2a)

nonzero overlap with it). Thus, a measurement of the ftrst
kind on a single system is irreversible in the sense that
one cannot knowingly get back the initial state if the latter
was not known a priori T.his is the sort of (ir)reversibility
which we have in mind in this Letter.

Recently, Ueda and Kitagawa [3] introduced the notion
of "logically reversible" measurements, in which the final

state retains complete information on the initial state,
and gave a specific example. Imamoglu [4] subsequently
described a quantum nondemolition (QND), logically
reversible measurement; he also raised the possibility of
physically reversible measurements, which might allow
one to measure the quantum state of a single system. This
would be quite different from the "state measurement"
described by Aharonov and co-workers [5], by means
of "weak" measurements on a "protected" state, which
requires that the state essentially be known a priori.

In this Letter, we describe a measurement on a spin
1/2 system, having the following properties: (i) It trans-

forms the initial state in a known, information preserv-
ing manner (it is logically reversible), but the final state
is not known, if the initial state is not. (ii) Its effect
on the system can be reversed (knowingly) by subse-

quent measurements of the same kind (even if the initial
state is unknown), but only with a probability of success
P"" less than 1, though sizable (e.g. , 1/2 & P"" & 1).
(iii) Measurements on many systems in the same state p'
allow one to deduce the diagonal elements (~Ip'I~&. (iv)
Repeated measurements followed by reversal on a sin-

gle system allow one to determine its state operator p'
with a probability of success (P"")~,where N is the num-

ber of measurements (hence reversals) required to achieve
some prescribed accuracy; that probability is very small
(because P"' & 1), but finite.

(2) States of a spin 1/2. —Let us first recall some
basic features of spin 1/2 systems, and establish some
notation: Let S = (S„,S», S, ) be the spin operator for a
spin 1/2. We shall usually denote the eigenstates I~, z)
of S, simply by I~). The most general normalized pure
state is of the form

The "reduced" state operator of s alone (obtained by
tracing out the environment) is

p = Tr, (lq'&, +,&'PI}
(2.2b)

('&x+Ix & &x-Ix &~I

&&x+Ix-& &x-Ix-&),

where a subscript z on a matrix indicates that it is a
representation in the I ~, z) basis. The representations of
(2.2) in the bases I

~, x) and I
~, y) are

(
2 + Re[c} 2

—a + i lm[c}~

z
—a —i Im(c} 2

—Re(c}

—,
—Im(c}j &

2
—a —i Re(c}

z
—a + i Re[c}~

—, + Im[c} )
(2.3)

The probabilities that a system be "found" in I+, z) or

I
—,z) are equal to a and b, so that the latter can be

deduced by measuring S, on many individual systems of
a statistical ensemble. Also, measurements of S„and Sy

yield the quantities 2
~ Re[c} and 2

~ Im(c}, in view
of (2.3): Thus, measurements of S„, S», and S, together
allow us to determine p.

(3) Quantum measurements —Before . describing our
reversible measurements, let us recall, for context, the
underlying process in measurements of the first kind, and
motivate the overall approach we will use.

Any knowledge about a microsystem s must ultimately
be inferred from a macroscopic change, or absence of
such a change, in a (macroscopic) apparatus M. For s
to directly trigger a change in the macrostate of M,
it must interact "strongly" with M, and thereby "feel"
its intrinsically unpredictable microstate. Therefore, the
state of s will itself be largely unpredictable after such
an action. So, if one wishes to "control" s, then it
must not interact strongly with M. Thus, to prepare
s in a definite state, one often resorts to a "negative
measurement, " whereby collapse into the desired state
is produced by the macroscopically observable absence
of an interaction: For instance, to prepare a spin 1/2
system s in a I+) state, pass it through a Stern-Gerlach
experiment with the I

—) channel blocked by a screen; if
no mark appears on the screen, then s has collapsed into
I+) (if, on the contrary, a mark appears, then s has been
"found" in the state I

—), i.e., the measurement readout is

I

—), but the precise state of s thereafter is unpredictable).
The above negative measurement is suitable for col-

lapsing s into one definite state. But it is inadequate if
one wants the final state to be predictable for all possible
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measurement readouts (I+) or
I

—)), as in a measurement
of the first kind. To achieve this feat, it seems the only
possible way is to let s interact strongly only with another
microscopic "probe" (or "messenger") object m whose
state is controllable (e.g., a photon), with which it gets
entangled; then, after the s-m interaction is off, m will
interact strongly with an apparatus (e.g. , a photographic
plate), yielding a measurement readout, and collapsing s
into a definite state. The prototypical probe measurement
was formulated by von Neumann [I], in a model of po-
sition measurement with a "meter" (which we prefer to
call a probe, because meter rather evokes a macroscopic
object).

(4) A measurement scheme. —We will now devise a
measurement scheme on a spin 1/2 system, in which
the final state can preserve complete information on the
initial state. Let S, = (S,„,S,Y, S„) be the spin operator
for the spin 1/2 system s on which we intend to perform
measurements. We suppose s is initially in an (unknown)
entangled state I'qt'&, +, of the general form (2.2). Since
we want to "control" the state of s, we let it interact only
with a microscopic probe, whose state is controllable.
We use as probe another spin 1/2 system m, with spin
operator S = (S „,S ~, S ), prepared in an initial pure
state (e.g. , by means of a negative measurement)

A A

U
—iOSszS Y (4.2)

I8)m = e ' 'I+)~ = cos z8 I+&~ + sin 28 I
—)

(4 1)

that is, a I+, z) state rotated by an angle 8 about the

y axis. The initial state of the combined probe-system
environment is thus I8) I%''&, +, . We let s interact impul-

sively with m via a Hamiltonian g (t)S„S Y, f d t g (t) =
0., which dominates the time evolution during the short
interval where g(t) 4 0, so that the unitary evolution op-
erator connecting states before and after the interaction is

Here, we wrote (since S, l ) = 2I ))

T = I+&T+(+I + I-&T-(-I = oi
T ), ' (4 6)

where

1 1 1 I
Ti = cos 28 ~ 4o, T2 = sin 28 ~ 4o. , (4.7a)

T2 + T2 T2 + T2 (4.7b)

We now measure S „the z spin of the probe m. This may
be done by passing m through a Stern-Gerlach experiment
and recording its arrival on a screen (its state thereafter
is unpredictable, but also irrelevant for us). According as
m is "found" in I+) or I

—) (i.e., makes a mark on the

top or bottom of the screen), s + e gets "collapsed" into
PV PV

IV'r, &,+, or I'Itr, ),+, [in view of (4.3c)], with respective
probabilities PT, and PT, given by

Pr = ('Prl@"r& = T+a + T b = (T+ —T )a + T

(4 8)

where we used the notation (2.2c), namely (g+ Iy+) = a,
(g-lg-& = b, and a + I = 1.

Equations (4.5) and (4.8) may be expressed in terms
of state operators for s alone [see (2.2b)], namely,

pr = Tr, (lqtr)(prl) = TTr, (IW')(qt'l)T = Tp'T (recall
that T t = T), or, after normalization to unit trace,

pr = (Pr) 'Tp'T

1 iT'a T T c& ar cr&l
T+~a+ T'ib iT+T c' T b ), cr br), '

The interaction of m with s entangles it with s +
e.' Indeed, the state of m + s + e after the interaction is

UI8& I p'&.+. = e ' " '" '"'I+&
I p'&. +. , (43a) Pr = Tr(Tp'T) = T+a + T b.

(4.9)

(4.10)

where

= (Til+) + T21 —
&m)l p'&, +, ,

= I+& I pr, &.+ +
I ) I pr, &.+. ~

(4.3b)

(4.3c)

1
T1 = cos 20 + 2c7Ssz T2 = sin 20 + zcrS„

(4 4)

are nonunitary Hermitian operators acting on s alone, and
PV

l+r), +, (we let T, without a subscript, stand for either Ti
or T2) are unnormalized (indicated by a twidle) entangled
states given by

I+r&,+, = Tl+'&, +, = T+ly+&. I+&, + T-lg-&, l-&, .

(4 5)

We could, in fact, have carried the argument solely
in terms of the state operator of s, without referring
explicitly to the environment e. But it was of interest
to see how the entanglement with e is carried along, and
gets modulated [Eq. (4.5)] by the measurement, without
being broken (if T 4 0), unlike in a measurement of the
first kind [see Eq. (4.11)below].

The hallmark of the above procedure is the pair of
transformations (Tl, T2), which completely determine the
possible final states (4.9), and their probabilities (4.10), in

terms of the initial state p'. The procedure will therefore
be called a (Ti, T2) measurement. A specific outcome
will be identified by its resulting transformation, T1 or
T2, which is known from the measurement readout. Note
that the final state itself (with which we would identify the
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T) +0, T2 XO, (5.1a)

T)+ 4 T] -. -. T2+ 4 T2
2 2 . . 2 2 (5.1b)

Equations (5.1a) imply that T in (4.9) is invertible, so that
the initial state can be deduced from the final state:

p
T 1 T 1

Tr(T ' pr T
(5.2)

Thus, the measurement is logically reversible in the
sense of Ref. [3]. Of course, the final state is not
known (unless the initial state is): Still, the procedure is
justifiably called a measurement, for it yields information
on p': Indeed, (5.1b) imply that Eqs. (4.8) can be solved
for a and b in terms of the (measurable) probabilities Pr,
and PT, .

Since the final state (4.9) after a (T~, Tq) measurement
contains complete information on the initial state, one
may wonder whether it is possible to knowingly get
back that (unknown) initial state: This cannot be done
by a unitary transformation, which would have to depend
on p' and pT, which are not known. Also, although
T ' exists, it is not of the physically realizable form
(4.6), since ~T '~ ) 1 [by (4.7) and (5.1a)]. However,
to reverse the measurement, one does not need T"'T = 1,
but only

T T=aU, (5.3)

where n is any complex number, and U any unitary
operator, since ~W) and u~'q») represent the same state,
and U can be undone by its inverse (namely a rotation).
The only operators of the form (4.6) which satisfy (5.3)
are [6]

T"' = ki
( 0

916

T""T = kT+T
0 ~ „„- t'1 0

-+ T ~0 ~1, '

(5 4)

outcome of a measurement of the first kind) is not known
here (if T~ 2 + 0), unless the initial state is.

The real parameters T], T2 can be given any desired
values, subject to (4.7b) (which guarantee that P&, +
PT, = 1), by suitable choice of the angle 8 and interaction
strength o in (4.1) and (4.2). For instance, to produce a
measurement of the first kind, as described in Sec. 3, put
p = 2m. and o. = 7r:—Then, by (4.6) and (4.7),

Tl = I+&(+I =
I 0 01, T2 =

I

—)(—I
=

0
0~ - 0 O~

2

(4.11)

are just projectors, so that indeed p&, = ~+)(+ ~, Pr, = a,
and pr, =

~

—)(—), Pr, = b H. ere, the final states are
known, but contain no information on the initial state.

(5) Reversible measurements —L. et us henceforth as-
sume that [unlike in the first kind case (4.11)]

where k is any real number such that ~kT ~

~ 1. It
follows that by means of a second measurement (T"",T"),
the first measurement can be reversed with a probability
of success P«" equal to the probability for the outcome
T«", namely,

k2T+ Tp«~ —k2T2 a + k2T2 bT-
T+a + T'(1 —a)

(5.5)

[we used (4.9), (4.10) and a + b = 1]. Since 0 ( a ( 1,
P"" = P""(a) lies between k2T+2 and k2T2, depending on
the (unknown) value of a. For example, if T+2 = 1/2,
T = 2/3, and k = 1, then 1/2 ~ P"" ( 2/3. With
k = 3/2, we get 3/4 ~ P"" ~ 1; in that case, however,
(T+") = 1, implying (T+)2 = 0 [by (4.7b)], so that if
the outcome is T", then s collapses into

~

—), losing all
memory of p'. To avoid this, we must take k such that
[kT ) ( 1 (strictly).

If we do not achieve reversal after the second mea-
surement (the outcome was T" rather than T""),we can
still try to get back p by doing additional, suitably tuned

(T&, T2) measurements, thereby increasing the probability
of reversal P"" above the one shot value (5.5). But one
can show that P"" always remains less than 1, whatever
the number of measurements made.

An interesting special case is if

rA 0&
O B,

&B 01
O A

(0 + A 4 B 4 0).

(5.6)

For instance, by putting 8 = zm. , 0 ( ~o.
~
( n. in (4.7),

we get (5.6) with A = cos(4n + 4o.), B = cos(4m-—
4o.) [note that [o.

~

= m. would yield the nonreversible first
kind case (4.11)]. We then have T2Ti = TiT2 = AB1,
that is, the measurement is self reversing: On-e gets back
the initial state whenever, in a sequence of measurements,
the outcomes T& and T2 occur in equal numbers.

(6) Measuring a state operator. By doing (Ti,—Tz)
measurements on individual systems of a statistical en-
semble, one can determine its density operator p, simi-
larly as was done in Sec. (2) by means of measurements
of the first kind: One first deduces a (and b = 1 —a)
from the relative frequency PT, of outcomes T~, using
(4.8). By then doing measurements with S„ in (4.2)—
(4.4) replaced by S,„,and then by S,», we determine Re(c)
and Im(c) [in view of (2.3)], whence p'.

Suppose that, in the above, N measurements are re-
quired to achieve some prescribed accuracy. It follows
that by repeated measurements, followed by reversal, on
a single system, one can measure its state operator with
a probability of success (P"") . Although finite, this is
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very small, because P"" ~ 1. Still, it appears from the
above that one can no longer affirm that it is in principle
impossible to measure the quantum state of a single sys-
tem [7].
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