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We give an exact solution of a recently proposed self-organized critical model of biological evolution.
We show that the model has a power law distribution of durations of coevolutionary "avalanches" with
a mean field exponent 3/2. We also calculate analytically the finite size effects which cut off this power
law at times of the order of the system size.

PACS numbers: 87.10.+e. 05.40.+j

Recently, a simple dynamical model for Darwinian evo-
lution on its slowest time scale was introduced by Bak
and Sneppen [1,2]. The model describes an ecosystem of
interacting species which evolve by mutation and natu-
ral selection. The model is abstract and focuses on only a
few important aspects of evolution. It should be thought
of as a coarse grained description of biological evo-
lution, i.e., a description on the largest time scale. It
provides a possible explanation for the characteristic in-

termittency of actual evolution, called punctuated equilib-
rtum by Gould and Eldredge [3,4], and the apparent scale
invariance of extinction events described by Raup and co-
workers [5—7]. Its principal idea is that, if life on Earth is
a self organized c-ritical dynamical system [8] then inter-
mittency and scale invariance are universal, hence robust
consequences that do not depend on details of its dynam-
ics, and so would be present also in much more cornpli-
cated systems.

The models described in [1,2] retain the salient features
of species evolving by adaptive walks in rugged fitness
landscapes and interacting by affecting the shape of each
other's landscapes, as proposed by Kauffman [9] and

analyzed in [10,11]. Even at this level of abstraction
details are ignored, however. Thus the state of an

ecosystem of N species is characterized simply by N real
numbers (x, ), i = 1, 2, . . . , N The model is . completely
specified by the following dynamical rule: at each time

step, the x, with minimal value, as well as K —1

others chosen at random, are replaced by K new random
numbers.

The value of v, characterizes the effective barrier
towards further evolution experienced by the ith species
while it exists at a local fitness maximum. The dynamics
consists in selecting the species with the lowest barrier
value —it is the first to evolve and replacing that value,
and those of K —1 other species, with new values.
For simplicity, the new values are assumed random, all

drawn from the same uniform distr.:bution in the interval

[0, 1]. The specification of which K —
1 other species

are affected by change in a given species defines the

interactions between species. Here, as in [2] and [11],
we assume that the K —l other species are a random
selection among the N —

1 other species in the ecology.
We assume this randomness is annealed; the K —

1

species affected by change in a given species are chosen
anew every time it changes. This assumption facilitates
calculations and does not seem less realistic than other
choices.

In the present paper we analyze the model for its
mathematical consequences, with little mention of their
biological interpretation, using random walk techniques.
We first treat the simplest case of K =—2 in some detail,
then briefly discuss the extension to the general case
towards the end. We calculate the distribution of the
duration of avalanches for an infinite system and find that
the system has the mean field exponent found in [2]. We
also calculate the finite size effects which appear as a
cutoff in the distribution of avalanche lifetimes.

Master equations. —A simple quantity one can con-
sider for this system is the number n of variables x; which
have values less than a fixed value A. Let P„(t) denote
the probability that this is the case at time t. From the
definition of the model one can then write the following
master equation for P„:

P„f(t —1) =- M„„,P„,tt I .

where the matrix M„„, for» 1 ls given by

M„ 1
„-= 8 —A (tt — 1), (N — 1).

— aI —.I~a- —2A) (n —
l I.''~N —

1 j,
~
—3w- + 4z —1)(» -- 1]

) V—
I„~„= I, l —— A) 4n —

l j/(W—
and for n = 0

M. ()
—— A

(3~
We note from Eq. (2) that it P„(0) = 0 for n ~ N. this

property remains true at any later time.
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One defines a A avalanche as the evolution taking

place between two successive times where the number n

vanishes. Thus if one lets Q„(t) denote the probability of
having n numbers x; less than A, given that the avalanche
started t time steps ago, Q„(t
equation as P„(t) does, but with Mo„replaced by 0. The
probability q(t) of avalanches having duration t is then the

probability that an avalanche terminates at time t,

1
q(t) = (1 —~)' Qi(t —1) +,Q2(t —1), (4)

assuming it began at time t = 0. Figure 1 shows exact
values of q(t) obtained by iterating the master equation
for several choices of N. One sees that q(t) is a power
law t ~ at early times with an N-dependent cutoff at late
times. As N ~ only the power law is seen.

Several other quantities could be obtained from the
knowledge of P„or Q„. For example, one can calculate
the probability distribution for the nth smallest value x("
of the N variables (x;) in the steady state,

8
n —1

Prob(x" = A) = — g P (t). (5)
BA

One could also calculate from the Q„(t) the maximum
value of n reached during an avalanche and the total
number of different variables involved in an avalanche.

Case of N = ~.—The limit N ~ makes the analyti-
cal approach much easier. We first treat the case of an

infinite system and then discuss how the limit N ~ is
approached. If N ~, n being kept fixed, Eqs. (1)—(3)
read

P0= 1 —2A, (10)

Pi = (1 —2A) I(1 —A) —1],

P„= (1 —2A) A
" (1 —A) (12)

We see that the assumption n = 8(1) is satisfied where

P„ is not exponentially small, provided A remains fixed at
a value less than 1/2 in the limit N ~. As A 1/2, all

the P„O,meaning that the probability that n remains of
order 1 vanishes. The scaling limit A 1/2 and N

is discussed below. For A & 1/2, Eqs. (6)—(9) predict
that P„O as t ~, and this is because the distribution
in the steady state is peaked around n = (2A —1)N.

For A ( 1/2, one can also calculate q(t) by using the
biased random walk picture. An avalanche started at time
t = 0 has Po(0) = 1, hence has initial condition Qi(1) =
2A(l —A), Q2(1) = A2, Q„(1) = 0 for n ~ 3. Using the
method of images [12, p. 236], one finds

P (t + 1) = ~'[Po(t) + Pi(t)]

+ 2A(1 —/t)P (t) + (1 —/i)'P (t), (8)

andforn ~ 3

P„(t + 1) = /'P„, (t) + 2A(l —/)P„(t)

+ (1 —/)'P„„(t)
These equations describe a biased random walk with a
reflecting boundary a n = 0. As t ~ ~, P„(t) evolves

to the time-independent solution to this equation. When
A ( 1/2 this solution is a geometric series for n ~ 2,

Po(t + 1) = (1 —A) [Po(t) + P (t)], 2n(2t + 1) At'"-'(1 —/t)r "i-
Q. (t) =

(t + n + 1)!(t —n + 1)!
(13)

P, (t + 1) = 2A(1 —A) [Pii(t) + P, (t)]

+ (1 —a)'P, (t),
Using Eq. (4) with N = ~, one gets for the probability
that an avalanche terminates at time t:

(2t)!
(14)

-5 gx'q(t) =
t=1

It is easy to calculate the generating function of q(t),

1 —2x A(1 —A) —[1 —4x A(1 —A)]
2A2x
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One can then check that q(t) is normalized and that the
average value of t diverges as A 1/2,

(t) = g tq(t) = (1 —2A) '. (16)

For large values of t, the asymptotic form of Eq. (14) is
ln(t)

FIG. 1. Dotted and dashed lines: distribution of avalanche
lifetimes q(t) at critical point for N = 5, 25, 125, 625, and
3125. Full line: analytical expression (26). All cases have
K = 2 and A = 1/2. The results for finite N are exact, obtained
by iterating the master equation (1)—(3) numerically.

(1 —A) [4A(1 —A)]'
q(t) = (17)

and when A ~ 1/2 this gives a power law with the usual
mean field exponent 3/2 of self-organized criticality [2].
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Scaling limit N ~ and A 1/2. —As A 1/2,
finite size effects start to become important. We consider
now the scaling limit

(18)

In this limit, P„becomes a function of n/ JN

ln(t3/2q(t) j

-1 /

~fI~) (19)

and by requiring that Eq. (19) is a steady state solution of
Eq. (1), one finds for large N that f should satisfy

-4 -& -2 -] 0

1n( t/ 1Y')

1 d
4 dx2 f + (x —2n) f —+ f = 0

dx
(20)

FIG. 2. Same results as Fig. l, except that we show t' q(t)
versus t/N so that the pure t '/' power law behavior corre-
sponds to a straight horizontal line.

—
I

)
—2(x —2u) d

—2(y —2n)

0
(21)

which leads to the following expression for the steady
state probabilities P„ in the scaling regime (18): scaling form (26). The average duration of an avalanche

at the critical point follows also from Eq. {26),

(t) = gq(t)t = v'2~N. (27)

In the scaling regime (18), the distribution of durations
of avalanches can also be calculated. The distribution

Q„(t) defined as above [see paragraph between Eq. (4)
and Eq. (5)] has the scaling form

(22)

(28)

and for rn = 0

Case of generic K value. —Let us now discuss briefly
the model for general K. The matrix elements M„ in

Eq. (1) become for m ~ 1

W

Mn, m g ~n —m+k;KHk —1;K—1;m —1;N —
1

k=1

Q„(t) satisfies the same equation as P„(t) except at the

boundary n = 0. Consequently, one can substitute the

scaling form of Q„(t) in the master equation, and find that

the function g(x, r) satisfies

Here

Pk 1 P A. —k (30)

Bg Bg 18 g—=g+ (x —2u) —+—
87 Bx 4 Bx2

(23)
is the binomial distribution and

Hk —1;K—1;m —];A —
1

g(x, r) =, exp( —x /r). (24)

With this initial condition, the solution of Eq. (23) is
—3//24x 2

~sr ~N 1 —e
e

—e e
—2x /(1 —e '

1 (25)g(x, r) =

Using Eq. (4), one then finds

~g 2r/X

q(t) =
J~N3/2 (e2t/Iv 1)3/2

' (26)

For t/N « 1 this result is identical to Eq. (17) at A =
1/2, as it should be. Figure 2 shows the same results as

Fig. 1, but in a scaling form, i.e., t3/2q(t) versus t/N As.
N increases, the results agree better and better with the

We shall only discuss the critical case n = 0 here,
because this makes the solution of Eq. (23) easier. In the

limit 7. 0 the solution must coincide with the expression
(13) in the limit 1 « n « t, i.e., with

=0 for k ~ —1 orK
k

k ~ K + 1, k integer.

(32)

For n = 6(1) and N ~, the limit of the master

equation is obtained by using Hk &-& &.„, ].& ]
= 6k ] in

is the hypergeometric distribution [13, 26. 1.21]. In

Eq. (28) the hypergeometric distribution gives the proba-

bility that K —1 numbers randomly chosen among
N — 1 yield k —1 with values less than A when there are
m —1 such numbers among the N —1. The binomial
distribution gives the probability that out of K numbers

assigned equiprobable random values between 0 and 1,
n —m + k numbers are given values less than A. Each
value of k denotes a different way that m values less than

A may change into n such values in a single time step.
We have everywhere used the convention, or analytical
extension,
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that limit; hence the generalization of Eqs. (6)—(9) is
min(K, n)

P„(r + 1) = B„xP.o(r) + g BI, ~P„k+i(t)
A=p

(33)

As t ~, P„(t) evolves to the time-independent solution
to this equation, which can be calculated using generating
functions. For A ( 1/K this solution is a sum of K —1

geometric series for n ~ 2,

Pp = 1 —KA,

Pi = (1 —KA) [(I —A) —lj,

(34)

(35)

K —1

P = (1 —KA) g " (3Q)
1 —A —(K —1)Azp

where zf„k = 1, . . . , K —1, are the K —1 roots of
the polynomial (1 —A + Az)» —z which differ from 1.
These roots all have modulus larger than 1 for A ( 1/K,
so P„decreases exponentially fast with increasing n.
Thus the assumption n = 6(1) is satisfied, provided A

remains less than 1/K in the limit N ~ ~. The critical
value is A = 1/K.

The calculation in the scaling limit done above for
K = 2 is easily extended to generic values for K. If in
this case one defines e by

1 tx

~N
one finds that Eq. (23) becomes

Bg Bg K —18 g—= (K —1)g + [(K —1)x —Ka] —+
Bv Bx 2K BX2

(37)

By a rescaling of r, x, and u, one recovers Eq. (23).
As a consequence, we expect that for a finite system
the expression which generalizes Eq. (27) becomes, for
A = 1/K (hence for u = 0)

(t) = a(K)v N,

where a(K) is a constant which depends on K.
In conclusion, we have obtained exact expressions for

several steady state properties of the random neighbor
model, in particular an exact expression for the finite size
effects which cut off the t ~ law.

For the same model a number of other quantities could
be calculated, for example, correlation functions like the
probability of having n' values of x; less than A' at time
t, assuming there were n such values less than A at time

t = 0. One could also extend the model by, instead of
removing at each time step the minimal x; value, allowing
the removal of any x; with a probability which depends
on x;.

An interesting question would be to extend our analyti-
cal results to other choices for the species affected by
change in a given species. In the limit N ~ with

other parameters held fixed, results obtained in the present

paper with annealed randomness of species interactions
should remain valid for a model with quenched random
interactions [14], hence also for any mixture of quenched
and annealed interactions.
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