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undoubtedly helped prompt the suggestion that a similar

property holds for coupled chains [6,7]: for odd n, the

spin gap vanishes, while for even n, there is a spin

gap. The generalized LSM theorem and our DMRG
results for n, = 2 and 4 provide strong support for this
idea. To obtain a more intuitive picture, we examine an
RVB variational wave function [14,15]. We consider both
short-range and long-range RVB states and conclude that
a short-range RVB picture applies for even n„whereas a
long-range RVB picture describes systems with odd n, .

The RVB states we consider are specific to bipartite
lattices, and contain only bonds connecting one sublattice

(A) to the other (8). We consider wave functions of the
form [10]
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The Lieb-Shultz-Mattis (LSM) theorem states that a
half-integer spin chain, with a Hamiltonian that has
local couplings and rotational and translational symmetry,
either has gapless excitations or else has degenerate
ground states. Affleck proved a similar statement for
coupled spin chains with odd n, [12]: An isotropic
coupled-chain system with half-integer spin and a finite,
odd number of chains either has gapless excitations or
else has degenerate ground states. For even-n, systems,
the theorem does not apply.

Haldane's conjecture [13] that single Heisenberg spin
chains containing integer spins have gaps, awhile those
containing half-integer spins do not, has by now been
fairly well established. This property of single chains

(b)
FIG. 2. Spin-spin correlations (S; . S,) versus )i —j) with i
and j located on the top chain for (a) n, even. The semilog plot
in the inset shows the exponential decay of the correlations. (b)
n, odd. The log-log plot in the inset shows that the correlations
for n, = 3 and n, = 1 decay with similar power laws. The
deviation from pure power-law behavior visible for the largest
values of (i —j) is due to finite-size effects from the open
boundaries.

lp) = $ h(i~ —j~) h(i„—j„) (i~j~) (i„j„).

Here (ij) represents a singlet bond between sites i and

j, and the non-negative bond amplitude h can be chosen
variationally. We consider a short-range RVB wave
function to be one with a bond amplitude h(l) which
decays exponentially in I or faster, while a long-range
RVB wave function will typically have a power-law
decay, h(l) —l ~. The state with the shortest possible
range is the dimer RVB state, for which h(i —j) = 1 for
i and j nearest neighbors, and is zero otherwise.

We first consider the dimer wave function for the two-
chain system. A valence bond configuration for this state
is formed by drawing dimer bonds connecting pairs of
adjacent sites, with every site part of one bond. The
resonance between different valence bond configurations
leads to a substantial lowering of the energy. The simplest
and perhaps most important type of resonance consists of
a square of four adjacent sites fluctuating between two
adjacent vertical bonds and two adjacent horizontal bonds
[15]. For a ladder system, there are two types of bond
configurations, "resonating" and "staggered, " as shown
in Figs. 3(a) and 3(b), respectively. The staggered type
of configuration is incapable of resonance, and thus has
higher energy. It is possible to form a local region of
staggered bond order only by placing soliton spin defects
at the edges of the region, as shown in Fig. 3(c). Ignoring
staggered configurations, the dimer ansatz gives an energy
per site of —0.556029 [16,17]. Compared with the
essentially exact result from the DMRG calculations of
—0.578043 140, the simple dimer RVB energy differs by
less than 4%. While the variational energy is reasonable,
the spin-spin correlation length $ = 0.238012 calculated
with this dimer RVB state is more than an order of
magnitude smaller than our DMRG result of g = 3.19.
This implies that h(l) has a larger range. However, as
discussed for the 2D lattice in Ref. [10], as long as h(l)
falls off exponentially one finds an exponential decay of
spin correlations and a spin gap.
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FIG. 3. Various dimer valence bond configurations, with and
without topological spin defects present.

Although, as we have seen, the correlation length is
poorly determined with the dimer RVB ansatz, a variety
of qualitative features predicted by the ansatz are indeed
present. For example, the variational state has a greater
bond strength for interchain nearest-neighbor bonds com-
pared to intrachain bonds [c.f. Fig. 4(b)]. Most impor-
tantly, within the short-range RVB picture one expects to
find that pairs of topological spin defects are bound. We
see from Fig. 3(c) that two spin defects produce a region
of staggered bond order between them if they are sep-
arated. Furthermore, one expects from this picture that
the pair of defects should reside predominantly on a sin-

gle rung, as in Fig. 3(d), rather than on adjacent sites on
a single chain, in order to maximize resonance. Each of
these predictions is supported by the DMRG calculations.

If we remove one of the sites of the lattice from both
the first and last rungs, as shown in Fig. 3(b), in order to
force the system to have staggered bond order, we expect
a topological spin defect to appear at each end to remove
the staggering effect. The resulting spin defects are
confined to the ends of the lattice, and are similar to the
effective S =

2 spins on the ends of open S = 1 chains

[9,18]. As in that case, instead of an isolated ground
state, we have a singlet and a triplet of states with a
separation in energy which falls off exponentially with L.
Figure 4 shows DMRG results for the local spin moment
and nearest-neighbor bond strengths in the vicinity of a
modified end of an n, = 2 lattice. A localized spin defect
is clearly present.

Now, it is possible to represent any singlet state as
an RVB state [10], provided long-range singlet bonds
are allowed. The crucial point in considering such an
RVB representation is whether the amplitude for long-
range bonds decays exponentially or algebraically, and if
algebraically, with what exponent. Our DMRG results
indicate that for the n, = 2 and n, = 4 systems the
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FIG. 4. One end of a long (L = 50) n, = 2 chain with the
first site of the bottom chain missing. A topological spin
defect (an 5 =

2 up spin) is trapped near the end of the chain.
The defect "heals" the staggered bond order imposed by the
modified chain end. In (a) we show the local magnetization,
and in (b) we show the nearest-neighbor bond strengths.

universality class is that of the short-range RVB. The
generalization of the LSM theorem, plus our results for
n, = 3, indicate that the universality class for odd n, is
the long-range RVB state.

What is the behavior for even n, ~ 4, and why is
there different behavior for odd and even n, 7 We believe
the answer to this can be understood in terms of the
confinement of topological defects present within a dimer
RVB state with even n, . The confinement for n, = 2 is
represented in Fig. 3(c), and the lack of confinement for
n, = 3 is shown in Fig. 3(e). In general, for even n„,
the presence of a single defect puts the system into a
generalized form of staggered order characterized by an

odd number of bonds crossing any vertical line separating
rungs. We expect that this staggered order, although still

capable of resonance for n, ~ 4, is higher in energy thm
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the "resonating" type of order. Thus defects are confined
for an even number of chains, just as for the n, = 2
case illustrated in Fig. 3(c). For odd n„ there is only
one type of order, characterized by an alternation as one
moves along the chains of an odd number and an even
number of bonds crossing a vertical line. A defect shifts
the alternation by one lattice spacing, but with no cost in

energy away from the defect.
The confinement of defects relates to the presence of

long-range bonds in the ground state because a long-
range bond can be considered to be a pair of separated
topological defects. Thus considering a single long bond
in a background of dimer bonds, we expect "confinement"
of the long bond for even n, ; in other words, we expect
it to be suppressed exponentially with the separation,
since the energy difference grows linearly with the size
of the staggered region. (In making this argument, we are
allowing the region between the two sites connected by
the long bond to resonate between different valence bond
configurations, while holding the long bond fixed. The
same conclusion is obtained if we instead consider the
number of valence bond configurations which have such
a long bond. ) Note also that the presence of nondimer,
but still short-ranged bonds does not heal the staggered
order induced by the long-range bond. Such a short-range
bond only heals the staggered order within the region of
the bond. The presence of these short-range nondimer
bonds can be considered as "dressing" the dimer state,
lowering the energies of regions with resonant bond order
and with staggered order, but not changing the result
that the staggered-order region is higher in energy. If a
sufficiently high density of nondimer bonds were present,
the confinement picture might not be valid, but variational
calculations for the 2D Heisenberg model show that even
in long-range, low-energy RVB states, dimer bonds are
much more probable than any other type of bond [10].

Since the characteristic size for this confinement mech-
anism is the system width n„we expect that for even n,„
the spin-spin correlation length varies as g —n„corre-
sponding to a spin gap varying as 1/n, . For odd n„no
confinement occurs, and the system is free to have long-
range bonds. Although this, in itself, does not show that
bond amplitudes decay as a power-law, both our numer-
ical results and the generalization of the LSM theorem
provide evidence that they do. The results suggest that
in general, unless there is some mechanism to suppress
long-range bonds, such as the confinement mechanism,
we should expect power-law decay of bond amplitudes.

The confinement argument applies also to the
anisotropic case, with J' 4 J. The most interesting case
is J' ( J. From our RVB picture we expect a gap to
be present for all finite J'/J. As J' = 0, the number
of vertical bonds decreases, and the difference in energy
between the staggered and resonant types of bond config-
urations decreases. Nevertheless, the energy difference
should be nonzero for all finite J', and confinement

should cause exponential falloff of the bond amplitudes

h(l), giving exponential spin-spin correlations and a finite

gap. We expect similar behavior for any system with an

even number of chains. This prediction is in agreement
with the conclusions for n, = 2 of Strong and Millis [4]
and the numerical evidence of Barnes et al. [5].

For even n„we expect that the confinement mechanism

applies also to charge defects. In particular, for n, = 2
we expect that a single hole will consist primarily of an

empty site and a spin defect located on the same rung,
in agreement with the results of Tsunetsugu et al. [19],
for the t-J model. Similarly, two holes will be bound,
and will primarily consist of two empty sites on the same
rung. For odd n„ the lack of confinement of long-range
bonds does not necessarily imply spin-charge separation,
although it does occur for n, = 1.
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