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It was pointed out recently that the v = 1/m quantum Hall states in biiayer systems behave
like easy plane quantum ferromagnets. We study the magnetotransport of these systems using
their "ferromagnetic" properties and a novel spin-charge relation of their excitations. The general
transport is a combination of the usual Hall transport and a time dependent transport with quantized
time average. The latter is due to a phase slippage process in spacetime and is characterized by two
topological constants.
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Recent technological advances in producing high mo-
bility bilayers have provided opportunities for studying
quantum Hall (QH) systems with internal degrees of free-
dom [1]. In this case, the internal degrees of freedom is
a pseudo-spin 1/2 labeling the upper and lower layers.
There is experimental evidence [2] indicating that un-
der appropriate conditions, QH states (at v = 1/2 and
v = 1) can be stabilized by correlations between layers
and have little to do with tunneling between them. It is
conceivable that similar correlated states will be found
at lower filling factors. Bilayer QH states with v = 1/m
(m odd) are believed to be the so-called (mmm) state.
It was realized recently that they are very unusual QH
fluids. Wen and Zee [3] showed that these states can pro-
duce Josephson-like tunneling between the layers. Very
recently, a number of authors [4] have pointed out that
these states behave like easy plane quantum ferromag-
nets and have studied possible phase transitions in these
systems.

The purpose of this paper is to study the magneto-
transport of QH ferromagnets (QHFs). The difficulty of
the study arises from the fact that the usual procedure of
extracting conductivity tensors (say, using flux insertion
arguments or Chem-Simon type theories) breaks down
when applied to the (mmm) state [5]. Here, we take a
new approach which amounts to studying the hydrody-
namics of QHFs. Our approach recovers the known re-
sults for ordinary QH fluids, and reveals a new transport
mode in QHF. A general QHF transport is a combination
of usual QH transport and a genuinely time dependent
transport with quantized time average. The latter corre-
sponds to a phase slippage process which turns out to be
a continuous nucleation of coreless vortices in spacetime.
The conductivity tensor for the time average currents is
characterized by two topological constants specifying the
nucleation process. It is interesting to note that there
is a close analogy between QHF and superfluid sHe-A.
They have similar order parameters, topological excita-
tions, and vortex nucleation processes.

To determine the magnetotransport of a bilayer sys-
tem, we need to find the current densities J„ for given

electric fields E„ in each layer, where tt =f and $ denote
the upper and lower layers, respectively. A general con-
figuration (E„) is a sum of identical and opposite fields

(E1)EI) = E+(1,1)+E (1, —1); Ey = 2(E1+EI). The
cases (E+ P O, E = 0) and (E+ ——O, E P 0) will be
referred to as the "in-phase" and "out-of-phase" modes.
Their corresponding current responses will be denoted
by a subscript "+" and "—," respectively. In linear re-
sponse, it is sufficient to consider these modes separately.
The in-phase mode is the usual QH transport, with cur-
rent response

e2

(J1 + JI )+ v B x E+ {J1 J
& )+ 0 (1)

where B is the direction of the magnetic Beld, taken to
be normal to the layers in our discussions. The out-of-
phase mode is unique to bilayer systems. For QHFs, we
shall show that dc Belds E will generate time dependent
currents. The sum (JI +Ji) oscillates with period T =
2To, where To is the Josephson period eb, V/h, and b, V
is the voltage that generates E . The factor of 2 is a
reflection of the double valueness of the pseudo-spin 1/2.
The time average current response (denoted by a "bar" )
can be determined from general argument and are given

by
2

(J1+Jt) = n~v BxE—
ve

(Ji —Ji) = n~ ——B x E
2 h

where n~ and n~ are integers. By studying a number of
examples consistent with the driving force E, we find
n~ = 0, n~ = 1. The sum of Eqs. (1) and (2) then gives

(3?

These examples also reveal an interesting oscillatory be-
havior of the currents. The time average of (Ji + Ji)
over the half period To is +v(e2/h)B x E, with alternat-
ing sign every half period. The time average of (Ji —Ji)
is {v/2)(e2/h)B x E for all half periods.
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To derive these results, we recall that the Hamiltonian of the bilayer system in the weak tunneling limit is [6]

dr @t~ p ——A
I Q —hami(r) + — [p(r)p(r )v(r —r ) + ms(r)ms(r )vi(r —r )],

1 - ( e )'- 1 I I

2m ( c 2
(4)
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@~( i, . . . , re 'I P" ~, ~', ~4-

I, pi, , luiv ) ~ h 4 ~

i=1
~ h 4 h

i&j
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where z = x+ iy and

( v p
e'~~~ sin8/2 (6)

is a spinor along l = xs cos8 + sin8(xi cosP + xz sing).
Since vq & 0, it is energetically more favorable for / to
lie in the xi-z2 plane. 6 will line up l along xi. How-

ever, in the correlation limit, it remains small compared
to the correction energy. The symmetric and antisym-
metric states can therefore be regarded as essentially
degenerat- a view that we shall adopt in our subsequent
discussions for simplicity [7].

If uniform potentials Vy and Vj are applied in the up-
per and lower layers, u and v will evolve as e"+&'~" and
e"+~'~" (e ) 0), meaning

where r = (x, y), Q„(r) creates an electron at the y, layer

at r, m, = i Tr@+o,@ (.i = 1, 2, 3), p = Trg+@, and both

v, vq ) 0. The pseudo-spin axes x~, x2, x3 are chosen so
that the symmetric and antisymmetric states (with en-

ergy difFerence 6) are represented by (i) and ( i). They
have no relations with the real space directions x, y, z.

We shall consider the (mmm) state in the correlation
limit 6 C& e /col e /Epd, where d is the spacing be-
tween layers, and eo is the dielectric constant. We be-
gin by expressing their wave functions (in the symmetric
gauge) in spinor form

in z (or a function of 0,). For simplicity, we shall from

now on focus on the "quasihole" case where ((z) is an

analytic function of z. In general, ( can be expanded

in powers of z. The simplest example of a nonuniform

analytic spinor is ((z) = n + Pz, where ( reduces to
spinors o, and P as z approaches 0 and oo. It also reduces
to the usual quasihole excitations if a oc P. For arbitrary

(, Eq. (5) implies that

2m(r) = p(r)l(r) . (8)

This is a statement of "full" ferromagnetism and is im-

portant for our subsequent discussions.
The relations between density and spin fluctuation can

be obtained from the "plasma analog" [8], where one in-

terprets P~„j (@([r,p])(z as the partition function of a
classical 2D plasma with charge m in a background po-
tential Vg(z) = —~z] /2+ ln~(~ . This implies that the
electron density is p(r) = —(4am) V V& = (27rm)
(4m.m) V' in~(~ . Because of the analyticity of (, the
density change can be expressed in terms of a deforma-
tion field [9] u = —i('+V(/~(~ +c.c. as

1 1
p(r) = — z V x u.2' m 4am (9)

It follows from Eq. (6) that [10,11]

z V x u = —(z x V) Vy+ 2e p~l (z x V)lp Vl~.

(10)

e eV—B,P = —(V& —V&)—:

e 2eU—Bgy = —(Ut + Ut):—
(7)

The first term vanishes unless y is a vortex, in which case
it is a 6 function [12].

The total electric current 3 = Jt + J~ can be obtained
by differentiating the number density Eq. (9) and using
the continuity equation (—e)p = —7' J,

Equation (7) implies that l precesses about xs with angu-
lar frequency eV/h. This immediately implies an "unsta-
ble" situation if V is different at two points far apart (i.e.,

E P 0). The l vectors at these points will assume their
ground state configurations (lying in the zi-x2 plane),
but rotate about x3 at diferent rates. As a result, more
and more winding in the spin texture is produced which
can only be relieved by phase slippage processes. As we
shall see, during phase slippage, t will be pulled away
from the 2:q-x2 plane every now and then in some region
in space. While this costs nucleation energy because of
the last term in Eq. (4), it cannot be stopped because its
energy cost will eventually be surpassed by the gradient
energy generated by E

Nonuniform textures imply spatially varying spinors.
However, to stay in the lowest Landau, ( must be analytic

1 e= ——(zxV) U — l (ixV) lxgl, (11)mh 4vrm

where we have made use of Eq. (7). The first term is

the usual QH transport, Eq. (1). tNote that E+ ———VU
and that Eq. (5) is derived for B = —z.] The second
term is due to the motion of the spin texture, which is
generated by E . To simplify discussions and formulas,
we shall from now on focus on the out-of-phase mode,
i.e. , VU = 0, VV g 0. We shall then drop the first
terms in Eqs. (11) and (10).

Consider now the time average of the current in y over

a period T, (I~ + Ii)„=T fo dt f J„dx. The integral
is evaluated for an arbitrary y coordinate, with upper and
lower limits x and xb denoting the edges of the sample.
From Eq. (11) we have
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T
(Ir + Il)y —— — dt

4vrm T

&b

dxl o( l x o(&l . (12)

The quantity in the brackets in Eq. (12) (denoted as A) is
the area on a unit sphere S2 covered by the "spacetime
rectangle" I' with area T x L, L = (xb —x ). A non-
vanishing A means nucleation of vorticity in spacetime
[0,(V' x u) g 0].

Equation (12) alone cannot determine Iy„and Ir&.
From Eqs. (8), (9), and (10), we have

2m(r) =
27rm

8 l xo(„l,
4vrm

(13)

1 1
28&m = B,l — V', [(z x '(7) l x O, l].2' m 4vrm

(14)

Equation (14) says that spin fluctuations will generate a
pseudo-spin current

K = (zxV') lxO, l,
4vrm

(15)

which is related to the charge currents as (—e)xs K~ =
Jt~ —J~~. The time average of current diEerence in y is

T—e 1
(Ir —It)„ = — dt

4vrm T

&b

dxxs 8 l x o(&l . (16)

The quantity in the brackets (denoted as B) is the area
in S2 covered by I' projected onto the xr-x2 plane.

To evaluate A and B, we consider a rectangular sample
(see Fig. 1) where the potentials (Vr, Vj) at x, and xt,
are (0,0) and (V/2, —V/2), respectively. This is the "un-

stable" situation we discussed before, where l precesses
about xs with angular frequency eV/fi at x& and remains

stationary at x [13]. In the steady state, the textural
motion must be periodic as E forces a constant rota-
tion on ( at xe. Note that l at x(, returns to itself after
time Tp = h/eV, ~hereas the period of ( [and hence the
entire texture l(x, y, t)] is T = 2To. The factor of 2 is due
to the double valueness of (. An example of the steady
state evolution of l is shown in the spacetime plot (x-t)
in Fig. 1. The evolution is a repetition of the pattern in-
side the rectangle T x L (abb"a"). Since the boundary of
the rectangle maps onto the equator of S2 twice, we then
have A = —4~n~, B = —2~n~, where n~ and na are
integers depending on how S2 is covered. Equations (12)
and (16) then give (IT + It )w

= rr & (I/rrr) (e2/h) (V/2) I

(Ir —It) = nrem(2m) (e /h)(V/2), which is Eq. (2) since
E = —2|v'(Vr —Vr) = —2V'V and B = —z.

To determine the topological integers n~, ng, we con-
struct explicit examples for the out-of-phase current re-

sponse. Since we are dealing with rectangular geometries,
it is more convenient to use the Landau gauge. The QHF
now reads [14]

„)=~ ~"' ((~.) (~. —~, )" (~71
~ L

2)j

where m = e ' and n is the ratio of the magnetic length
to the sample length in y, which can be taken as 1 without
loss of generality. To match the josephson relations Eq.
(7) at the boundaries x, and xb (now taken to be —oo
and +oo), we choose a spinor of the form

&(~) = «(, ) +~*""I,—..vi/2h ),
where A is a constant setting the scale of textural destor-
tion in real space [15]. Its textural evolution in the space-

2
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FIG. 1. The / vectors at r are represented
by a line emerging from r. A solid (empty)
square is placed at r to indicate that t has
a positive (negative) xs component. The
boundary of the rectangle I' = (abb'a') maps
onto the equator l on the unit sphere S2.
The lines cc', dd', ee', c'cc", d'd", and e'e"
map onto loops C, D, E, C, D, E. This cov-
ering gives A = 2', 8 = —m for the lower

rectangle abb'a' and A = —2x, I3 = —vr for
the upper rectangle a'b'b"a". If the loops C,
D, and E are traversed in directions opposite
to those depicted, then A = 2', B = n. for
a'b'b" a". The textural pattern is calculated
from Eq. (18) with To = 1, y = 2, A = 8.
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time plane (x-t) (for a given y) is shown in Fig. 1. The
phase slipping nature of Eq. (18) is obvious in this figure:

l reduces to a uniform configuration every half period
To = h/eV. Despite the continuous winding at x = +oo,
the precessional angle of l about x3 when going from
x = —oo to +oo never exceeds 2vr. [This angle would

increase indefinitely if the x~ and xq components of l

never vanish. The fact that the spin vector of Eq. (18)
points to +x3 at certain points in the bulk every now and
then allows the texture to get rid of whatever amount of
twisting accumulated in its xi and xz components. ] The
topological areas A and B for each half period can be
calculated from Eq. (18) and are independent of A. A
is found to be p2x, with alternating signs every half pe-
riod. B is found to be 7r fo—r all half periods. This means
over the full period T = 2', A = 0 and B = —2z, cor-
responding to n~ ——0, nB ——1. We have then derived
Eq. (3) from this specific example. I have also examined
a number of other spinors satisfying the same Joseph-
son boundary condition at infinities. Their time average
responses are identical to that of Eq. (18). I therefore
think that these values of nA and n~ have general valid-

ity, despite the lack of a general proof which is certainly
desirable. On the other hand, spinors of the form Eq.
(18) may be realized for energetic reasons. Note that the
up and down components of Eq. (18) (oc au+ Ae "v'/~"
and iv + Ae+"v'/2") correspond to quasiholes in the up-

per and lower layers moving in opposite directions (and
coalescing into an ordinary quasihole at regular intervals

To) Agenera. l ((tv) satisfying the same boundary condi-
tion will contain more zeros (i.e., moving quasiholes) in
the upper and lower layers than the spinor Eq. (18), and
is therefore energetically more costly.
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