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Orientational Order and Depinning of the Disordered Electron Sohd
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Two-dimensional classical electron solids under the influence of modulation-doped impurities are
studied by using a molecular dynamics method. We find that in the strong disorder limit the ground
state configuration contains both isolated dislocations and disclinations, whereas in the weak disorder
regime only dislocations are present. We show, via continuum elasticity theory, that the ground state
of the lattice should be unstable against a proliferation of free disclinations above a critical dislocation
density. Associated with this, the behavior of the depinning electric field changes.

PACS numbers: 73.20.Dx, 73.50.Yg, 74.60.Ge

Since Wigner [1] proposed a solid phase of electrons,
searches for a Wigner crystal (WC) have been pursued in

various systems. In a low density region, a realization
of the WC on a helium film has been established
[2). The WC is also expected to be formed in two-
dimensional systems in very strong magnetic fields [3].
Recently a considerable amount of experimental study has
focused on the search for this magnetically induced WC
[4,5]. All of these observations have been interpreted
as indirect indications of a pinned WC. There is also
some evidence of experimental observation of the WC
at zero magnetic field in Si metal-oxide-semiconductor
field-effect transistor [6]. However, disorder, which is
ubiquitous, makes it difficult to interpret the experimental
observations. For example, the value of the depinning
threshold electric field of the presumed magnetically
induced WC for slightly different sample geometries
differs up to two orders of magnitude [4]. To interpret
experimental observations, therefore, it is necessary to
understand the pinning sources and estimate the pinning
forces. One aspect of this problem is that random
impurities pin a WC and at the same time deform it,
introducing defects in the lattice. Only a few studies
have been devoted to clarifying the possible sources
of pinning [7,8] in the two-dimensional electron system
confined in a heterojunction. Furthermore, the details of
the relation between the defects generated by impurities
and the pinning [9] are not well understood.

In this paper, we study pinning and orientational or-
der in a model of the classical two-dimensional electron
system. Our calculations are most directly applicable to
electrons on a helium film [10],although some of our ba-
sic conclusions should apply to heterojunction systems in

strong magnetic fields, where the filling factor is quite
small, so that quantum exchange effects are unimportant
[11]. Disorder is introduced by modulation-doped donors
randomly located on a plane separated by a setback dis-
tance d from the two-dimensional electron plane. Since
the charged electrons and ions are interacting by a 1/r
potential, the effect of impurities is characterized by a di-

mensionless constant d/ao, where ao is the lattice con-
stant of a perfect lattice. It is known that arbitrarily weak
disorder destroys long-range translational order in two di-
mensions associated with a crystal lattice [12]. However,
we can study the orientationol order of this system, and
the associated change in behavior of the depinning thresh-
old electric field. From numerical simulations with up to
3200 particles, we have observed defects —predominantly
dislocations and disclinations —generated by the impu-
rity potential. In the weak disorder limit (large d/ao),
the ground state configuration contains a quasi-long-range
orientational order [13] (i.e., hexatic phase), and we ob-
served no free disclinations in the system. However, as
disorder increases, isolated disclinations appear, destroy-
ing the quasi-long-range orientational order [14]. We will

argue below, based on continuum elasticity theory, that
above a threshold density of dislocations, it is always en-

ergetically favorable to create isolated disclinations.
Our principal results are summarized in Figs. 1 and

2. Figure 1 shows the orientational correlation functions
for different values of d/ao. One sees that the quasi-
long-range orientational order is destroyed in the strong
disorder limit. Associated with this crossover, the behav-
ior of the threshold electric field is changed as shown
in Fig. 2. The crossover takes place approximately at

d/ao = 1.15 ~ 0.1, which is consistent with the vanish-

ing of orientational order. To qualitatively understand this
behavior, it is necessary to observe the motion of the elec-
trons as they depin. (Details will be published elsewhere
[15].) We find that the electrons tend to liow along di-

rections of the local bond orientation; i.e., to Bow along
local symmetry directions of the crystal. Since the system
does not have long range orientational order, it is neces-
sary for electrons to pass through regions of great strain
in the lattice, where the orientation changes. These re-

gions of strain represent bottlenecks in the electron fIow.
As the disorder strength is tuned and orientational order
changes from quasi-long-range to short range, the number

of bottlenecks proliferates and there is a sharp increase in

the threshold field. We also note that the threshold elec-
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FIG. 1. The orientational correlation functions for various
setback distances. Different symbols represent data for samples
with different setback distance. From top to bottom, d/ao =
2.0, 1.7, 1.5, 1.3, 1.2, 1.1, 1.0, 0.9, and 0.8.

e(r; —R, )
+d2

where [r;) are the electron configurations, (R;} are
quenched donor configurations on a modulation-doped
plane, d is the setback distance, and e is a dielectric
constant [16]. Numerically, we use a simulated annealing
molecular dynamics method [17] to find an electron
configuration, (r;), that corresponds to the ground state
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FIG. 2. The depinning threshold field observed in various
samples in the unit of Eo = e/mao. The dotted lines are guides
to the eye.

tric field is very sensitive to the setback distance, which

might explain the very disparate values of this quantity in
experiments [4].

More explicitly, we study a system whose energy is
given by

2

or, at least, a typical low energy metastable state. %e
impose periodic boundary conditions, and use the Ewald
sum technique [18] to handle the long range interaction
in computing energies and forces. Because our study

focuses in part on the depinning properties of this system,
and it is possible that the depinning will be inhomoge-
neous (i.e., that current paths form inside the crystal),
we must account for the fact that electrons exiting the

system will need to reenter it on the opposite side of the
unit cell. To minimize any mismatch of current patterns
at the boundaries, along the direction of the depinning
field we juxtapose two square boxes whose impurity
configurations are mirror images of each other.

We take e = 13 in the numerical simulations, and

slowly lo~er the temperature from above the melting
transition down to 20 mK for a typical electron density
n = 5.7 X 10' cm . At this temperature we measure
the orientational correlation functions, which are summa-

rized in Fig. 1. The correlation functions can be well
fitted by exponential forms in the strong disorder limit
(small d/ao). We find that the correlation length g is
a slowly varying function for d/ao & 1; in the inter-

val 1.1 & d/ao & 1.2, the correlation length rises rapidly,
suggesting a possible divergence (and an associated phase
transition). However, once the correlation length exceeds
our system size, fits to either an exponential form or a
power law become possible, and it becomes difficult to
precisely identify what value of d/ao would be the critical
one in an infinite system. However, based on the sharp
increase in g(d), we suspect that it is in the vicinity of
1.2.- This estimate is also consistent with the observation
of the structure factor in Fig. 3, where the sixfold sym-
metry of the orientational order [13] appears only for the
samples with setback distance bigger than l. lao.

%e also measure the threshold depinning field. To
do this, we shift the positions of the particles along
a chosen direction by steps of 0.01ao [17] up to 1—
3 lattice constants. After each shift 200 MD steps are
taken to equilibrate the system, and the pinning force is
obtained in the next 100 MD steps from averaging the
force on particles due to impurities. The threshold field
is determined by the maximum value of the pinning force
during the shifting process; error bounds may be obtained

by comparing the heights of the several peaks that one
sees. The results are shown in Fig. 2. We take two
samples for each setback distance. %e also determine the
threshold field for several samples by gradually increasing
an external field and by identifying the point at which
the currents start to flow. The results obtained through
the two methods are in good agreement. The behavior
of the threshold depinning force changes around d/ao =
1.15 ~ 0.1, which suggest that disclinations produce extra
pinning of the lattice [19].

%e now describe how free disclinations might be fa-
vored in strongly disordered samples using standard elas-
ticity theory [20]. Since the charged system requires
charge neutrality at long wavelengths, we consider a model
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crystal is unstable against the formation of highly separated
dislocations even in the weak disorder limits [15], and
this is certainly the case in our simulations. As the
disorder strength is increased, the density of dislocations
increases. It is instructive to consider the energy of a single
disclination in a complexion of dislocations. We write the
defect energy as

ED EBD I)p'

where E~, E&D, and EDp are energy of the disclination, the
coupling energy between disclination and dislocations, and

energy of interaction of the disclination directly with the
background impurities, respectively. In a finite size system
with area A, we have

FIG. 3. The magnitude of the structure factor, ~S(G)(, in the
reciprocal lattice vector space for samples with d/ao = (a) 0.8,
(b) 1.0, (c) 1.1, (d) 1.2, (e) 1.4, and (f) 1.7. Only the points
at which [S(G)( ) 2 ~S(G)[,„are plotted. For large setback
distances, a sixfold symmetry appears, indicating the presence
of the quasi-long-range orientational order.

whose elastic energy is given by

E= — dr 2pu;-+A V'-u —Bp r (2)

where p and A are Lame coefficients, u(r) are displace-
ment vectors, u;, = (I/2)(Bu;/B x+ Bu, /x;), and p(r) =
po + ao Bp(r) is an effective in-plane impurity density.
(Summation convention is assumed for repeated indices. )
Since the longitudinal sound velocity goes to infinity for
1/r interaction, we take the limit A: ~ at the end of our
calculation. This will guarantee that the electron density
tracks the neutralizing background, which is the correct
physics at long wavelengths. With defining a stress tensor,

P 77
Ego = s &~ + rj g ln

9

i)~
baal = —( l&aal ~«o

(7)

Thus, the net energy of an isolated disclination for large A

1s

)
where b, and r, are Burgers vectors and the position
vectors of the dislocations, and s = ~1 is the "charge"
of the disclination, specifying whether it is a fivefold
of sevenfold defect [14,22]. The contribution of (En~),
where ( . ) denotes a disorder average, scales only as
QA ln A, and so is negligible for large system sizes. We
note that s may always be chosen such that E&o & 0
for any complexion of dislocations. The contribution

EgD may be estimated by computing the average over
complexions of disclinations. Assuming for simplicity
that the dislocations are completely uncorrelated, (b(r)
b(r)) =—(~b~) B(r —r'), we find

II;j = 2p u;J + AB;J' (V ' u), (3) 36ao

we can divide Eq. (2) into the contributions from smooth
elastic displacements and displacements related to defects
which involve singularities:

E=Eo+E', (4a)

E0

2

2

d r6p[Bp —V u]

d r(Bp) 1—

~p, dr Bp (4b)

E'= — d r H', , u', —A V-u' Bp, 4c

where u and u' represent the regular and the singular parts,
respectively, etc. We note that all these quantities are well
behaved as A = ~. As with many crystal systems in

the presence of disorder [9,21], we find that our electron

so it is energetically favorable on average to create a
disclination if

& ~ ao.

Interpreting (~b~)2 as the density of dislocations in lattice
units, we estimate the critical density of dislocations as

nl, = (I/47')ao above which disclinations are energeti-
cally favorable. This value is roughly in agreement with

what we observe in our simulations, in which isolated
disclinations appear when nb = (17—22)ao. We note, fi-

nally, that our computation of (E') essentially estimates
the mean value of the disclination energy, if we computed
the distribution of E for all possible disclination loca-
tions. This mean scales to ~ as A ~ NI, = ~, where

Nq is the number of dislocations. One can show that for a
simple Gaussian distribution of b(r), the variance of (E')
is also proportional to W~, so that this model predicts a
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crossover behavior from a state with very few disclina-
tions to one with many at the critical dislocation density.
It is interesting to speculate that a more realistic distribu-
tion for b(r) could convert this crossover to a true phase
transition. This would be quite consistent with our simu-

lations, where isolated disclinations are observed for small

d/ao, and there is an apparently diverging orientational
correlation length just before they disappear. Details of
this calculation will be presented elsewhere[15].

In conclusion, we have observed a crossover between
a weak disorder regime and a strong disorder regime in
a study of a model Wigner crystal under the influence
of the modulation-doped donor impurities as we tune the
setback distance. In the weak disorder regime, we have
a hexatic phase where a quasi-long-range orientational
order is present, whereas in the strong disorder regime
isolated disclinations destroy the orientational order. The
crossover places d/ao = 1.15 ~ 0.1. Associated with this
crossover, the behavior of the threshold electric field
changes. We argue by a continuum elasticity theory that
this crossover can be understood as a proliferation of
disclinations when the density of dislocations is bigger
than a certain critical value.
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