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Landau Theory for a Metal-Insulator Transition
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The nonlinear a model for disordered interacting electrons is studied in spatial dimensions d & 4.
The critical behavior at the metal-insulator transition is determined exactly, and found to be that
of a standard Landau-Ginzburg-Wilson d theory with the single-particle density of states as the
order parameter. All static exponents have their mean-field values, and the dynamical exponent
z = 3. Bn/Bp, is critical with an exponent of 1/2, and the electrical conductivity vanishes with an
exponent s = 1. The transition is qualitatively different from the one found in the same model in a
2+ e expansion.

PACS numbers: 71.30.+h, 64.60.Ak

Despite much progress in our understanding of the
metal-insulator transition (MIT) in recent years [1], the
search for a simple order parameter description of this
phase transition in the spirit of a mean-field or Landau
theory has so far proven futile. Early attempts at a mean-
field theory of the Anderson transition of noninteracting
electrons [2] failed because the most obvious simple order
parameter (OP), viz. , the single-particle density of states
(DOS) at the Fermi level, turned out to be uncritical [3].
As a result, the Anderson transition can be described
only in terms of a complicated functional OP [4]. At the
Anderson-Mott transition of disordered interacting elec-
trons, on the other hand, the DOS is generally believed
to be critical, but it is not obvious how to construct an
Op description in terms of it;. Indeed, our understanding
of this transition is largely based on a generalized matrix
nonlinear cr (NLcr) model [5], for which no mean-field

type fixed point (FP) is known, and which has been ana-

lyzed in terms of a small disorder expansion near d = 2.
As a result, there is no simple description of the MIT
analogous to, say, Weiss theory of ferromagnetism. This
is all the more remarkable because of the technical simi-

larity, first noted by Wegner [5], between the NLcr model
description of the MIT and that of Heisenberg ferromag-
nets.

In this Letter we show that the NLO. model for inter-
acting disordered electrons [5] possesses a saddle point
solution which has all of the characteristic features of a
Landau theory with the DOS as the OP. We further show

that this solution corresponds to a renormalization group
(RG) FP which is stable for d ) 4. This establishes the
exact {for d ) 4) critical behavior at the MIT in this
model, which can be summarized as follows: Let t be the
dimensionless distance from the critical point at temper-
ature T = 0, 0 the energy distance from the Fermi level,
and Q the DOS. Q vanishes according to

For the critical exponents P, v, and z, and for the ex-

ponents p and q characterizing the OP susceptibility, we

find

v = P = 1/2, p = 1, tI = 0, z = 3.

All thermodynamic susceptibilities show the same critical
behavior,

Here y can stand for t;he critical parts of the density
susceptibility Bn/Bp, the specific heat coefficient p =
limy o Cv(t, T)/T, or the spin suceptibility y, . In gen-

eral all of these susceptibilities can also have an additive

noncritical contribution which is an analytic function of
t and A. As an argument of susceptibilities, 0 denotes

the external frequency, and 0 and T can be used in-

terchangeably in a scaling sense. The charge difFusion

coefficient behaves like the OP, Eq. (la). Assuming that
Bn/c)p has no noncritical background contribution, the
electrical conductivity o vanishes according to

o(t, 0=0) t, o(t =O, B) 0/,
so the conductivity exponent s = l.

In what follows we first derive Eqs. (1) by explicitly

constructing the saddle point solution, and then using

RG techniques to show that it is stable for d & 4. We

then use scaling arguments to obtain additional informa-

tion about susceptibilities, which leads to Eqs. (2) and

(3). We consider the matrix NLo model of Refs. [1,5],
i.e. , a Gaussian field theory for a Hermitian matrix field

Q(x) with constraints)Q(x)] = 11, with Il the unit ma-

trix, and trQ(x) = 0. Q is a classical field comprising two

fermionic fields. It carries two Matsubara frequency in-

dices n, m and two replica indices ci, P (quenched disorder

has been incorporated by means of the replica trick). The

matrix elements Q„i (x) are in general spin quaternions,

with the quarternion degrees of freedom describing the

particle-hole and particle-particle channel, respectively.

The action [1,5] can be written
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S(Q, rt) = f dx tr(A(x)(Q (x) —IL) +(B„Q(x)) ) + tH jdx tr(ttq(x)) — ) K„(Q(x) Q(x))„.
u=s, t,c

(4)

Here G is a measure of the disorder, 0 is a diagonal
matrix whose elements are the external Matsubara fre-

quencies u„, and H is proportional to the free elec-
tron DOS. K, q, are coupling constants describing the
electron-electron interaction in the particle-hole spin sin-

glet, particle-hole spin triplet, and particle-particle or
Cooper channel, respectively. K, ( 0 for repulsive in-
teractions. [Q o Q], i, denotes a product in frequency
space which is given explicitly in Refs. [1,5]. Notice that
we have enforced the constraint Q = il by means of an
auxiliary matrix field A(x). The constraint trQ = 0 will

be enforced explicitly at every stage of the theory.
The model, Eq. (4), is an efFective one which was de-

rived to capture the essence of the low-lying excitations
of the system, i.e. , the low-frequency large-wavelength
behavior. The soft (i.e. , diffusive) modes are given by
correlation functions of the Q„~ with nm ( 0, while the
DOS is determined by the average of Q~~ [1,5]. It is
therefore convenient to separate Q into blocks:

Q„i = e(nm)Qg(x) + O(n)O( —m)q„~ (x)
+ 0(—n)O(m)(q+)„~ (x). (5)

G . . 2mTGK,
[p'+-'(A +A )]'

The conventional treatment of the NL(T model [1,5] pro-
ceeds by integrating out A(x), using the constraint Qz =
IL to eliminate Q, and expanding the action in powers of
q. Here we use a different approach inspired by treat-
ments of the O(N) NLo model in the large-N limit [6].

Since the further development will be closely analo-

I gous to the treatment of an O(N) Heisenberg model, let
us pause to point out the similarities between these mod-
els. The matrix elements Q„correspond to the massive
cr component of the O(N) vector field, while the q„cor-
respond to the massless vr fields. The disorder G plays
the role of the temperature in the magnetic model, it is
the control parameter for the phase transition. HA is in
some respects analogous to the magnetic field conjugate
to the order parameter (r. The last term in Eq. (4) has
no analogy in the Heisenberg model. We will see that in
the mean-field treatment of the matrix model presented
here it plays a rather trivial, although crucial, role.

We proceed by integrating out the massless q field.
Since the action, Eq. (4), is quadratic in Q and hence in q,
this can be done exactly. We then look for a saddle point
of the resulting efFective action S[Q, A]. This task is sim-

plified by restricting ourselves to saddle point solutions
that are spatially constant, diagonal matrices with diag-
onal elements Q~, A~. This ansatz is motivated by the
fact that (Q~~i) has these properties. For simplicity we
restrict ourselves to the particle-hole spin-singlet chan-
nel, i.e. , we put Ki ——K, = 0. We will see later that this
restriction does not influence the critical behavior. This
last property is expected in a mean-field theory where all
universality classes typically have the same critical be-
havior. We further use a short-range model interaction,
so that K, is simply a number. Again it can be shown
that a Coulomb interaction leads to the same critical be-
havior [7]. We find for the saddle point solution,

- —1

(6a)„;p'+-,'(A„, +A„, „+ )

We discuss several aspects of this result. First, Q~
()

—=

Q, which is the DOS normalized by the free electron re-
sult, decreases with increasing disorder (remember K, &
0). This is the well known "Coulomb anomaly" in the
DOS [8], and it is proportional to K, as well as G. Tech-
nically, this is due to the replica structure of the theory:
All terms on the right hand side of Eq. (6a) that are
independent of K, vanish in the replica limit and have
not been shown. Physically, it reflects the fact that the
Coulomb anomaly is due to the interplay between inter-
actions and disorder. It is important that, in the light of
Refs. [2,3], our method to construct a mean-field theory
had better not work in the absence of interactions (i.e. ,

for K, = 0). This expectation is borne out explicitly
by Eq. (6a), which correctly yields Q = 1 for K, = 0.
Second, Eqs. (6) constitute an integral equation for Q„
which involves an integration over all frequencies. As
noted above, the NLcr model is designed to describe only
low-frequency behavior, and cannot be trusted at high

frequencies. However, on physical grounds it is clear that
Q„ tends to a constant at large frequencies, so for fixed
K, Q will vanish at a critical value G, of G. We can eas-
ily determine the critical behavior for bG —= G —G, & 0:
We Find Q (—bG) )', which is the first relation in Eq.
(la). Furthermore, the leading low-frequency behavior
for G = G, involves only integrals up to the external fre-
quency, which is the region where the theory is controlled.
For d ) 4 we Find Q(O) Ai) s, which is the second re-
lation in Eq. (la) with the exponent values given in Eq.
(lb).

We have shown that our saddle point actually corre-
sponds to a minimum of the free energy by expanding the
action to second order in the fluctuations bQ, bA about
the saddle point. Details of this calculation will be re-
ported elsewhere [7]. The result is a positive definite
Gaussian matrix, so the saddle point is indeed a mini-
mum. One can then integrate out bA to obtain the order
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parameter correlation function G„,„,„,„,(k). At zero
frequency, and close to the critical point (i.e. , for Q —+ 0)
the result simplifies substantially and we find

GM eo(k) = G/4
(7)kz+ 2 Q'

where the bare correlation length (0 is given in terms of a
complicated integral which is finite for d ) 4. From Eq.
(7) we obtain three more critical exponents: v = P =
1/2, il = 0, and p = 2v = 1, cf. Eq. (1b).

Apart from the DOS we are interested in the trans-
port properties. Let us first consider the charge diffusion
coefficient D, As. a hydrodynamic quantity it can be
obtained from the NLo model by a direct calculation of
the particle-hole spin-singlet q propagator [1,5]. Insert-
ing the saddle point solution, Eqs. (6), into Eq. (4), one
reads off the q-vertex function, and a matrix inversion
yields the corresponding propagator. The latter has the
usual difFusion pole structure, and D, is obtained as the

eoefBcient of the momentum squared. We find

G(H + K,Q)
We see that at the transition D, vanishes like the OP. The
behavior of the conductivity can be obtained by multi-
plying D, with Bn/Bp Th. e latter is less straightforward
to obtain, since as a thermodynamic quantity it is not
simply given by the hydrodynamic behavior. We will
determine its critical behavior from Eqs. (11) below.

We now use RG techniques to show that these re-
sults represent the exact critical behavior of the model
in d ) 4. The RG will also provide an easier route to a
derivation of Eqs. (2) and (3) than a direct calculation
would be. Let us return to the action, Eq. (4). If we in-
tegrate out q, we get Eq. (4) with Q replaced by Q plus
terms obtained by contracting q fields. Of the latter, one
term is linear in A. The resulting action can be written
in the form

dx tr[OQ(x)]—S[Q, A] = —c dx tr[B„Q(x)] — dx tr[tA(x)] + 2H ) K„[Q(x)o Q(x)]„
u=s, t, c

+ ui dx tr[A(x)Q (x)] + dx) Al(x)(u2)ISA~(x) + (other terms).

Here c = ui = 1/2G and t is a matrix composed of
—(1/2G)X and the term of O(A) coming from the q
contractions. I:—(nm, o;P, i) where i labels the spin-
quaternion space, and uz is a matrix which is finite for
d ) 4. The explicit expressions for t and uz will not be
needed for our present purposes, they will be given else-
where [7]. The "other terms" in Eq. (9) all come from
contracting q fields. They can easily be constructed dia-
grammatically, but will turn out to be irrelevant for our
purpose.

We now apply standard power counting to the ac-
tion, Eq. (9). Our parameter space is spanned by p =
(c, t, H, K, i „ui, uz) and the coupling constants of the
other terms. In looking for a RG fixed point, we follow

Refs. [9] and [6] in fixing the exact scale dimensions of
our fields Q and A to be [Q] = d/2 —1, [A] = d —2 (we
define the scale dimension of a length to be —1). This
corresponds to fixing the exponents rl and fl defined by
the wave number dependence of the Q- and A-correlation
functions to be rl = 0 and rl = d —4, respectively. With
[0] = [T] = d, we find the scale dimensions of the var-
ious coupling in Eq. (9) to be [c) = 0, [t) = 2, [H]
1 —d/2, [K, i,]

= 2 —d, [ui] = [uq] = 4 —d. A power
counting analysis of all of the other terms in Eq. (9)
is straightforward. The result is that the coupling con-
stants of all of these terms have scale dimensions which
are smaller than 4 —d for d ) 4 [10]. We conclude that
the Gaussian FP given by y,

' = fc, 0, 0, 0, . . .) is stable
for d & 4. The only relevant parameter is t, and the
correlation length exponent v is v = 1/[t] = 1/2. c is
marginal, as expected, and all other parameters, includ-

ing H and K, &, , are irrelevant (the combinations HA
and K, t,T are, of course, relevant, which reHects the
fact that a finite frequency or wave number drives the
system away from the critical point). This Gaussian FP
obviously corresponds to the saddle point solution dis-
cussed above. The stability of the FP proves that the
critical behavior obtained from the saddle point solution
is exact in d ) 4 [10].

The RG arguments given above imply that the order
parameter obeys the scaling relation

Q(t, HA, ui, u2, . . .)

=b " Q(tb HAb'+" b u b
"

)

(10)
where v = 1/2, and we have suppressed all parameters
with scale dimensions smaller than 4 —d. The expo-
nents P and z follow from Eq. (10) by using standard
arguments [9]. The crucial point is that ui and uq are
dangerous irrelevant variables: Solving the theory ex-
plicitly in the saddle point approximation, we see that
Q(t 0 = 0 ui ~ 0) ui ~, and Q(t = O, A, ui
O, uz ~ 0) (uz/ui)'~ . Equation (10) then immedi-

ately yields P = 1/2, z = 3 in agreement with Eq. (1b).
We emphasize that K, is not dangerously irrelevant, even
though Q(t = 0, 0) is proportional to gK, . The point is
that the vanishing of the (bare) K, just shifts the tran-
sition point to infinity, making the mean-field transition
inaccessible as it should be at K, = 0 [2,3], but does not
change the critical behavior.

We finally derive Eqs. (2) and (3). To this end we no-
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tice that all susceptibilities have been identified in terms
of the coupling constants of the NLo model: Bn/Bp
H+K„y, H+Kt, p H [1,11]. H, K„and Kt are
all irrelevant, which means that all three susceptibilities
vanish at the critical point. Furthermore, K, q scale to
zero faster than H, so the asymptotic scaling behavior
of all three susceptibilities is the same and given by that
of H, or p. The only remaining difficulty is to correctly
incorporate the dangerous irrelevant variables. Let us
consider the singular part f, of the free energy density

f, which satisfies the scaling equation [1],

f (t T ) b (d+z) f (tbl/v Tbz b4 d)—
(11a)

In the critical regime we have f, Q I/ui, and hence

(11b)

We see that hyperscaling breaks down in the usual way:
d in Eq. (lla) gets replaced by 4. By differentiating Eq.
(11b) twice with respect to temperature, and using z = 3,
we find

(12)

and hence Eqs. (2) [12]. Finally, combination of this re-

sult with Eq. (8) yields Eq. (3). We note that the criti-
cality of Bn/By, is very remarkable, since it does not show

in the 2+ e expansion treatment of the same model [1,5],
while it is an important feature of the Mott-Hubbard
transition, which recently has enjoyed a revival of inter-
est [13].

Several questions arise from these results: (1) What
is the connection between the present results and those
obtained in d = 2+ e, where Bn/Bp is found to be un-
critical in perturbation theory [14]? A possible answer is
that Bn/Blj, has an essential singularity near d = 2 which
is invisible in the 2 + e expansion. Another possibility
is that the Gaussian FP discussed here is not continu-
ously connected to the one found near d = 2. (2) Can
the present techniques be extended to the more general
field theory [1] underlying the NLo model? If that is
the case, one would expect the upper critical dimension
of the resulting OP description to be 6, or, for techni-
cal reasons similar to those in Ref. [2), 8. Which of the
two models would capture more of the physics relevant
in d = 3 would a priori be unclear. These problems will
be pursued in the future [7].
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